The Long Term National Power Quality Survey – Benefits, Opportunities and Future Directions

Presented by Ian Gibb
Prepared by I. Gibb, S. Elphick, V. Smith, V.J. Gosbell, R. Barr

Contents

1. Aims of the LTNPQS
2. LTNPQS History
3. The LTNPQS Today
4. Important Findings
5. Adding Value for DNSPs
6. Opportunities and Future Directions
7. Conclusions
1. Aims of the LTNPQS

Aims of the LTNPQS

- To understand typical levels of PQ experienced by customers connected to electricity distribution networks in Australia and how they are developing over time
- To better understand how to manage PQ
- To obtain insights into PQ which are useful in dealing with customers
- To provide insight into the establishment of appropriate PQ performance standards
2. History of the LTNPQS

- The current LTNPQS run by the ENA PQ & R Committee in association with UoW was launched in 2002
- Participants select a range of different sites and record measurements from specially installed PQ monitors or smart tariff meters
- Quantities recorded are:
 - RMS voltage (V);
 - Voltage unbalance (U);
 - Harmonic voltage THD (H) + 5th harmonic ; and
 - Voltage sags (S)
3. The LTNPQS Today

- The Total number of sites has grown continually since project inception
- The project now includes over 700 sites across Australia
- The LTNPQS is now one of the most significant in the world in terms of:
 - what is measured;
 - geographical extent; and
 - years of operation

![Trend of Total Number of Sites](chart.png)
3. The LTNPQS Today

Distribution of Sites across Australia (2006-2007)

Eastern States
Long Term Participants
515 LV Sites
238 MV Sites
3. The LTNPQS Today

PQ Reporting

- The LTNPQS has been a driver for changes to the PQ monitoring paradigm from reactive to proactive
- The LTNPQS has provided a unique opportunity for development of power quality data analysis and reporting techniques
- Reporting techniques have developed as the project has grown and novel methods for reducing data to usable forms without loss of important detail have been developed
- The large PQ database associated with the LTNPQS has enabled world-leading research into PQ behaviour and PQ reporting
3. The LTNPQS Today

LTNPQS Limitations

• LV sites now dominate – but almost without exception close to supply Tx
• There are very few weak LV sites. This results in an optimistic view of LV network performance and a knowledge gap with regards to PQ at the end of LV feeders where PQ is expected to be worst
• Obtaining some data (e.g. site classifications) can be difficult
• Site numbers are not evenly distributed across all states:
 – LV sites dominate for some states while MV sites dominate others
4. Important Findings

LV Voltage Performance

- Absolute Voltage Deviation (AVD) is a measure of deviation of voltage from the middle of the acceptable range (effectively 240V)
- With a LV range of 225.4V – 253V, the AVD limit is 13.8V or 6% of 230V
- Many sites exceed this limit
- Few sites with voltage lower than the range due to under-representation of weak sites
4. Important Findings

MV Unbalance Performance

- The ESC in Victoria specifies a 1% unbalance limit (whilst other jurisdictions specify a 2% or 3% unbalance limit)
- 7% of sites are outside the 1% limit
- The industry will need to decide if a 1% limit is realistic, achievable and in line with international best practice
4. Important Findings

Voltage Harmonic Trends

- Generally harmonic levels are acceptable and lower than levels measured in Europe
- Voltage THD levels have been increasing steadily until the last survey in 2007
- It is unclear whether the slowing/reversal of the trend is permanent or temporary

![Graph showing Voltage Harmonic Trends](image-url)
4. Important Findings

Sag Behaviour

- Investigation of Sag behaviour has shown that:
 - The CBEMA curve is unsuitable as a measure of distribution utility performance
 - The Protection curve, developed by The University of Wollongong, gives a better idea of utility capabilities
4. Important Findings

Sag Behaviour continued

- UoW has developed a single index for annual sag behaviour which is under international consideration
- It can be applied to a site, a distribution network or to find a national average
- The trend of sags indicates wide variation in sag levels due to inconsistent weather patterns
- It may be some years before an appropriate sag limit can be specified
5. Adding Value for DNSPs

The need for more Weak LV Sites

- The solution to the high voltage levels at strong sites may not be as simple as changing taps
- The above graphs shows voltage levels at the start and end of an average overhead LV feeder
- Non-compliance at the end of the feeder is observed at the high and low ends of the voltage range
5. Adding Value for DNSPs

Reporting by Site Classification

- Site classifications are used to compare sites with similar predominant features
- They can also be used to develop an idea of the site numbers required
- This analysis may be more relevant than simple comparisons across the country
- The survey is heavily biased toward strong sites from either suburban or rural networks
- There are few weak sites and few sites from remote networks
- Load types are fairly evenly represented with mixed load being the most common
5. Adding Value for DNSPs

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV & MV</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply Strength</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong & Weak Supplies</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential, Industrial, Commercial, Mixed</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Type</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>City, Suburban, Rural, Remote</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>128</th>
</tr>
</thead>
</table>

2 * Voltage Level * Supply Strength * Load Type * Network Type
6. Opportunities & Future Directions

Smart Meter Rollout

• The mass roll-out of smart meters will result in increased numbers of potential sites
• Increased site numbers will assist in assuring statistical confidence in results
• Smart meters may redress the shortage of weak LV sites and shortages for other site characteristics
• If monitor positioning is considered carefully there are opportunities to examine how PQ propagates throughout networks
6. Opportunities & Future Directions

Long Term Benefits

• Continued monitoring of harmonic and sag trends will allow understanding of how PQ levels are developing over time

• Long term participation will also show if PQ planning and management strategies being put in place are effective

Enhanced Analysis

• There is scope for more detailed analysis if participants are willing to put extra effort into data handling

 – more precise benchmarking comparing like sites with like sites

 – more rigorous factor analysis than has been possible in the past
6. Opportunities & Future Directions

Enhanced Voltage Reporting

- The development of a new voltage standard has prompted a review of voltage reporting techniques
- Changes will be made to reporting methods for low voltage and medium voltage sites
- Values of 99th percentile (V99%), 1st percentile (V1%) and voltage spread will now be included in high level reporting tables and figures
7. Conclusions

Highlights

• After 6 years of development the LTNPQS is now one of the largest surveys of its type in the world

• The LTNPQS has encouraged distribution network businesses to develop their own initiatives in power quality monitoring systems and practices

• The LTNPQS has lead to:
 – Better understanding of a systematic approach to conducting, analysing & reporting complex PQ surveys
 – Better understanding of the power quality levels on Australian distribution networks
 – Continual advancement in PQ reporting techniques and indices
 – The ability to make informed submission regarding achievable PQ levels
7. Conclusions

Important Findings

- Voltage (specifically high voltage levels) at LV sites has been identified as the disturbance of most concern
- More weak LV sites are required urgently
 - To gain a more realistic understanding of voltage behaviour
 - To be timely for the setting of a new voltage standard now under development
- MV unbalance may be of concern if a 1% limit is seriously invoked
- Harmonics, currently at safe levels, appear to be increasing
- No discernable trend of sags has been identified as yet
7. Conclusions

Opportunities

• The smart meter roll-outs being undertaken by many utility provide an opportunity for increased site numbers and more detailed reporting
• There is scope for more detailed analysis if participants are willing to put extra effort into data handling
 – more precise benchmarking comparing like sites with like sites
 – more rigorous factor analysis than has been possible in the past
• Increased participation of all distribution network businesses across Australia will give a truly national indication of PQ levels in Australia