The Statistical Behaviour of Voltage at LV Sites

Sean Elphick1, Vic Gosbell1, Robert Barr2

1 Integral Energy Power Quality and Reliability Centre
2 Electric Power Consulting

Contents

1. Introduction
2. Effect of Data Aggregation Interval
3. Variation of Statistical Measures
4. Effect of Reporting Period
5. Conclusions
1. Introduction

Background

Current Australian voltage standard, AS60038
- specifies nominal voltages and ranges
- but not measurement and reporting techniques

Standards Australia and the ENA
- currently developing a PQ type voltage standard
- will specify both limits and measurement techniques

Uncertainty about the effects of
- measurement methods
- data processing techniques
1. Introduction

Voltage Control

The voltage levels at a LV site are dependant on
- Load behaviour
- Supply strength
- Upstream effects (quantised, time-delay)

Voltage dynamic behavior can be decoupled into
- High Frequency Component
 - due to load changes
 - not controllable
- Low Frequency Component
 - due to voltage regulation action, line impedance
 - is controllable
1. Introduction

Measurement and Reporting Chain

Monitoring
- Sample rate
- Aggregation interval
- Sag/swell thresholds
- Window widths

Reporting

Reporting Intervals

Statistical Analysis
1. Introduction

Key Monitoring & Reporting Parameters

- **Data Aggregation**

- **Continuous rapid sampling every cycle**
- **Aggregation to primary ‘building blocks’**
- **Aggregation to longer intervals**
- **Final aggregation**

EESA NSW Chapter Conference
September 2007
2. Effect of Data Aggregation Interval

How fast do we need to sample data?

Modern instruments sample data very rapidly
- uncertainty as to how often this data should be captured

IEC61000-4-30 recommends 10 minute intervals
- how much difference does it really make?
- how does equipment respond??

Study
- 14 distinct sites supplying data for 26 weeks
- Sites are fairly typical
- Voltage behaviour over each day examined
2. Effect of Data Aggregation Interval

- Site 1A Day 1 10s Voltage Trend
- Site 1A Day 1 30s Voltage Trend
- Site 1A Day 1 1min Voltage Trend
- Site 1A Day 1 10 min Voltage Trend
- Site 1A Day 1 15 min Voltage Trend

10 s
30 s
1 min
10 min
15 min

EESA NSW Chapter Conference
September 2007
2. Effect of Data Aggregation Interval

Detail is lost as aggregation interval is increased
- High Frequency (HF) components

Proposed that the short term trend is comprised of
- Low Frequency (LF) component which is present in the longer term
- HF component

A method as been developed to separate the components
- Separation of the HF component reveals some interesting behaviour
2. Effect of Data Aggregation Interval

High Frequency Component Behaviour

- No obvious clusters of high frequency variations e.g. due to specific operations
- Random distribution with most variation (approx 90%) being within 1% (of 230V) of the steady state value

EESA NSW Chapter Conference
September 2007
2. Effect of Data Aggregation Interval

High Frequency Component Behaviour

Data Aggregation → Statistical Analysis → Reporting Period

LF component does not vary with HF component
- No correlation between low frequency variation and high frequency variation
- Indicates utility can control voltage levels
3. Variation of Statistical Measures

Study
- Data for 15 weeks from 6 sites sampled at 30 second intervals
- Data also aggregated to 10 min intervals

![Data Aggregation Diagram]

Statistical Analysis

![Statistical Analysis Diagram]

Reporting Period

![Reporting Period Diagram]

Statistical levels (1% - 99%) practically identical
- 5 times as much variation for maximums
- Rationale for fast sampling unclear
3. Variation of Statistical Measures

How much do different Statistical Measures Vary over 1 week?

Statistics calculated from 10 minute data over 1 week
• 22 sites

Significant variation for lower end of range
4. Effect of Reporting Period

Is the Reporting Period Important?

37 sites from the LTNPQS have been studied

- The study focused on methods characterising one year using a 95th percentile value

Methods used

- 95th percentile value across whole year
- Max of monthly 95th percentile values
- Max of weekly 95th percentile
- Max of daily 95th percentiles
4. Effect of Reporting Period

Results

Yearly value calculated monthly will on 10% >
- 19% greater for weekly calculation
- 35% greater for daily calculation

Therefore the reporting period is important
5. Conclusions

Framework for Development of a Measurement Analysis Procedure

Step 1: Choose data Aggregation Interval

- **Proposal:** Use 10 minutes
- Ignore 10 second (or less) values
 - This allows a wider range of instrumentation & ease data handling/processing burden
 - Instantaneous deviations limited to about 1% from 10 minute values

Step 2: Choose Statistical Period

- **Proposal:** 1 day
 - A good day doesn’t compensate for a bad day
5. Conclusions

Step 3: Choose Statistic

- **Proposal:** 1% & 99%
 - Excludes 2 data points at the top and bottom to allow for extreme but rare behaviour

Step 4: Choose Survey Period

- **Proposal:** 1 week
 - Minimum business cycle

Step 5: Choose what to compare with

- **Proposal:** Equipment must be designed to tolerate a range ±1% greater than the utility 10 minute voltage range