
THE USE OF COMPUTER SIMULATION TO ILLUSTRATE
DYNAMIC ROUTING ALGORITHMS IN AN EDUCATIONAL

SETTING

Peter Vial & Parviz Doulai
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong
Wollongong, Australia

Abstract

Computer simulation plays an important role in the educational experience of
technologies involved with telecommunication engineering. At the University of
Wollongong a computer simulation oriented laboratory class was designed and
implemented to illustrate dynamic routing algorithms at undergraduate level. This paper
outlines the design and purpose of the laboratories in which ARENA was used and
highlights how Visual Basic modules can be incorporated in the design of
telecommunications based simulations.

1. Iintroduction

In engineering education, computer simulations are
used to represent the essential features of a real
system so that learners can test their analytical and
design skills in a convenient and safe environment.
For instance, in basic electrical engineering
education, computer simulation provides a unique
way of creating stimulation and challenge along
with an opportunity to work on realistic case studies
that could not be achieved otherwise. In
engineering education, a successful implementation
of a simulation-based teaching and learning
approach requires extensive course material and
laboratory support documents development
accompanied by supplementary lecture material
including specially tailored assignments, tutorial
questions and assessment tasks.

During the academic year of 2001 a new subject
was offered for the first time in conjunction with
the University of Wollongong new undergraduate
program in Internet Technology program. This
subject was called Internet Technology 2, and is a
core second year subject for students doing
Bachelor of Internet Science and Technology
(BIST) and optional for students doing Computer
Science.

This paper reports on design and implementation of
a computer simulation-based learning environment
aiming to help students to understand Internet’s
dynamic routing algorithms in a visually rich
environment. This paper also looks at the actual

students’ usage of the system. Preliminary
evaluation of the project indicate that the
simulation-based learning environment for complex
engineering concepts such as dynamic routing
algorithms directly contributes towards the student
improved learning.

2. Course Structure
The Faculty of Informatics and the School of
Electrical, Computer and Telecommunications
Engineering have cooperated together to offer a
degree called the Bachelor of Internet Science and
Technology (BIST). Students who study under the
Technology strand are able in second year to
undertake a new subject called Internet Technology
2. These students are required to participate in an
advanced laboratory program that has lent heavily
upon simulation using a program called ARENA. It
is a telecommunications based subject, studying
aspects of Internet Technology which include
Dynamic Routing Algorithms. Associated with this
subject was an advanced laboratory in which the
second year undergraduate students were to
participate. As this laboratory was primarily
concerned with reinforcing concepts encountered
within the subjects curriculum, part of the
laboratory program used simulation.

The simulation package chosen was ARENA. This
package has been used within the School of

Tadeusz A Wysocki
64

Electrical Computer and Telecommunications
Engineering to teach classical telecommunications
queueing theory at undergraduate and postgraduate
level [10]. The simulations in the previous subjects
were trivial in scope compared to the simulations
undertaken for this subject. This paper outlines and
gives examples of how ARENA was used to
provide simulations of basic dynamic routing
techniques. The ARENA simulations used will be
explained and full (unabridged) copies of the
simulations have been provided to the conference
organizers for inclusion with the proceedings and
are available at the first authors web page [4].

3. Dynamic Routing Algorithms
The Internet uses dynamic routing algorithms that
come under two classical types:

1. Distance Vector
2. Link State

Typical examples of Internet protocols which use
Distance Vector are RIPv1 (Routing Information
Protocol), RIPv2 and BGPv4 (Border Gateway
Protocol) [1]. Two examples of Internet protocols,
which use the Link State algorithm, are OSPF
(Open Shortest Path First) and IS-IS (Intermediate
System to Intermediate System) protocols [1][2].

Distance Vector algorithms work on the principle
that all paths have equal value. Here, each
individual link from one router to another is called
a ‘hop’. The number of hops between a source
network or host and a destination network or host is
used as the statistic to determine the minimum hop
count. There are many deficiencies with the use of
the Distance Vector algorithm, such as:
• The minimum hop count may not be the most

appropriate path through the Internet. For
example, choosing links which may have a
lower bandwidth than another set of links with
a larger hop count but much higher bandwidth
for the intervening transmission links is not an
optimal choice [1]

• Each router has no knowledge of the interfaces
that other routers are connected to. The only
information that each router knows is the hop
count of its neighbourhood routers from other
reported networks. As a result, the Distance
Vector algorithm is also known as routing by
rumor. [3]

• These algorithms are slow to converge, for
example if using the legacy distance vector
protocol RIP, it uses 30 seconds between
routing table updates and thus for a medium
sized network (one with about 100 routers), it

may take many minutes before convergence is
achieved.

• These algorithms are prone to routing loops
once convergence has been achieved. This
occurs because each router has absolutely no
knowledge about the surrounding network
topology. When a link failure occurs it is
possible that loops can occur as outlined in
[5][6].

The other dynamic routing algorithm is the link
state algorithm. This is based on Dijkstra Shortest
Path First (SPF) algorithm [7]. It requires that the
entire network topology be known, which in
practice is usually defined in terms of Areas or
Autonomous Systems (Systems controlled by a
single organisation). The Internets main protocol
for Interior Routing is OSPF. As indicated it
separates the local network into Areas, with the
backbone network being designated Area 0. The
link state algorithm works by sending out link state
messages (called LSA’s in OSPF) which contain all
of the network subnets and interfaces known by the
individual routers within a Area or domain. The
individual routers then store the information from
various Link state messages into a topological
database. From this database the Shortest path first
tree can be derived. The root of the tree is then
taken as the router that is forming the database and
all branches are attached from this point to the form
the shortest path tree as shown in Figure 3.

Starting at the root of the tree, which in Figure 2 is
Router A, each branch is revealed and the minimum
cost path is chosen. For example in Figure 2, the

Advertiser

ID

Network

ID

Cost

Of Route

Neighbour

ID
A
A
A

1
2

10

2
3
1

E
F
B

B
B

10
12

4
2

A
C

C
C

12
15

5
2

B
D

D
D

15
61

5
3

C
E

E
E

1
61

3
2

A
D

F
F

2
22

2
3

A
-

Figure 1: Example of a generic link state
topological database

Tadeusz A Wysocki
65

Figure 2: The topological database in tree format
showing all possible linkages with Router A as the
root.

first minimum path is actually to Net 10, so it is
made permanent in the Shortest Path Tree and then
Router B is revealed. This process is continued,
always choosing the link that costs the less until the
Shortest Path Tree is formed and all networks in the
Area have had a path found to them. Note that the
cost to Router B is zero, as the cost going into any
Router using Dijkstra’s algorithm is always zero.
Applying the algorithm in this case leads to the
routing or forwarding table and Shortest Path Tree
shown in Figure 3, where the link between Net 15
and Router D shown in Figure 2 has been removed.
[7]

These dynamic algorithms were modeled using
ARENA which allowed students to monitor the

Net
ID

Link Cost Next Router
From A (root)

1 2 -
2 3 -

10 1 -
12 3 B
15 5 B
22 6 F
61 4 E

Figure 3: The Shortest Path Tree after applying the
Dijkstra algorithm and the resultant routing or
forwarding table.

underlying protocol mechanisms. This is not
apparent when using a real network as the
mechanisms are transparent to network managers.
This is , in fact, one of the advantages of using
simulation over building an expensive physical
network.

4. ARENA in Modeling
Telecommunications systems

ARENA is a modeling package that will run on any
Windows based Personal Computer. It is a
graphical package which is based on the SIMAN’s
modeling language [13][16][17]. ARENA comes
with many predefined modules such as Arrive,
Depart and Server. The Arrive module allows an
arrival process to be modeled. It is possible to use
many different built in random processes such as
exponential (expo()), uniform (unif()) or gaussian
(norm()) distribution. The Server module allows a
entity (usually modeled in the routing algorithm as
representing a message or datagram or packet) to be
queued and serviced given some random or fixed
distribution.

The ARENA simulation, like many other network
simulators (for example, OPNET [9] or ns-2 [8]),
can be run, stepped and paused. This allows
network wide variables such as routing tables to be
examined at different time epochs. This is not
normally possible with a physical network. One
difference between ARENA and these other
simulators is that it is more generic, and not
specifically aimed at simulating telecommunication
subsystems. It has to be modified to simulate
aspects of such systems.

ARENA allows the network modeler to use sub-
models to represent embedded systems within the
model. It also allows the use of global variables
which can be used, in the case of dynamic routing,
to mimic and show individual routing tables
throughout the network (regardless of whether
using Distance Vector or Link state algorithms).
These features were utilised in the design of all
three simulators. Where possible standard modules
were used, such as ARRIVE, or TALLY to collect
statistics such as how many packets or entities have
been successfully routed through the network. Also,
in the case of Distance Vector a entity can have an
attribute associated with it. This attribute may be a

Tadeusz A Wysocki
66

simple hop count (which is implemented in the first
two ARENA simulations) which allows the student
to measure the hop count before and after the
routing algorithm has converged. Such illustrations
are difficult to achieve with a laboratory full of
routers and switches and even if these were
available, the cost would be much more than that
incurred by using the simulator.

ARENA provides the ability for the student to setup
and watch the values of variables within the
simulation using the watch window. This is utilised
in these simulations so that the student can observe
the slow change in routing tables using the Distance
Vector examples and the calculated routing tables
using the link state database and shortest path
calculations of Dijkstra.

The following provides basic information on
selected experiments that were designed and
implemented in this course.

5. Distance Vector Algorithms
The ARENA simulator was used to illustrate simple
aspects of Distance Vector routing algorithms. The
first experiment showed how the routing algorithm
converges. The second ARENA simulation started
by setting up a converged network and then by
generating an entity that indicated that the link to a
destination network had fallen over, which resulted
in a simulated routing loop.

One of the first Distance Vector routing protocols
was RIP (Routing Information Protocol). It was
developed as a result of research at Xerox PARC
(Palo Alto Research Center) [12]. This protocol
defaults to Routing table updates every 30 seconds
and this was the default value set up in the
simulation for routing updates. The basic operation
of the RIP protocol was implemented within the
ARENA simulation called “RIPv1DV.doe”.

In order to demonstrate the concepts involved in
Distance Vector routing convergence, a network
with fifteen interior routers, seven ingress nodes
(routers) and three egress nodes (routers) was
chosen. The configuration is shown in Figure 4. A
set of global variables were setup to represent
individual routing tables of each router in the
network and initialised in a Variables module as
shown in Figure 5. This was achieved by using an
array for each routing table, for example the routing
table for Router B (referred to as RB in

Figure 4: Chosen Network Topology for Distance
Vector simulation (shows the look of simulation
while it is being run).

Figure 4 above) was assigned to the array variable
BrouteTable. This variable has 3 rows and 3
columns. Table 1 shows what each element
represents and which variable in the watch window
represents its value.

Figure 5: Variables module in ARENA simulation
RIPv1DVc.doe

Figure 6: Initial values for Router B’s, routing
table from RIPv1DVc.doe

The routing table for RB is shown in Table 1. This
was used in the laboratory instructions to show how
the watch variables needed to be interpreted and
thus understand how the individual routing tables
were changing. The initial values for the Routing
table for Router B were as shown in Figure 6. The
first three values {1,2,3} showed the destination
identifiers for the three destinations used in the
simulation. The next three values {16,16,16}

Tadeusz A Wysocki
67

showed the current number of hops to the
destination. In RIP a hop count greater than 15
indicates that the destination is unreachable. The
simulator also uses this as an indication that the
destination is currently unreachable. The last set of
values indicates which interface should be used to
send out packets for particular destinations. In this
case the values are set to zero and the built in
default paths are used. When the simulation runs
and actual routing paths are discovered, these will
change from zero to one , two or three to indicate
which outgoing interface is to be used. The concept
of an interface could include an ethernet card or a
serial communications port depending on the
underlying Data Link and Network layer protocols
being used in a real network.

Figure 7 shows a section of the simulation. In it,
there are connections going from the individual
interior routers (Routers A and B are shown here).
Associated with each router is a sub-module which
has connection points connected to green paths.
These sub-modules generate and receive the
individual routing messages generated every time
an update occurs. This is the only way that the
individual routing tables can be changed. Once
these tables stop changing the dynamic routing
algorithm is said to have converged and the
destinations can be reached via a minimum number
of hops.

Figure 8 shows a section of the sub-module
associated with Router B. This code processes the
received routing message, comparing the contents
of the neighbours routing table (which is encoded in
attributes inside the entity as would occur in a real
packet based network) with the routers current
routing table. If a quicker route to a particular
destination is discovered this processing will update
Router B’s routing table before the routing message
is disposed of in the Dispose module at the end.

The students record the routing tables before the
dynamic routing algorithm starts, and then every
routing update after this until they have identified
where the routing tables stop changing at which
point the Distance Vector algorithm has converged.
The simulator allows the time at which the
algorithm starts to be modified and also the time
between routing messages may be varied.

ARENA simulation RIPv1DVLoops.doe is based
on RIPv1DVc.doe, using the same number of
interior routers (15), ingress routers (7) and egress

routers (3). However, the sub-modules were
dramatically re-designed so that all routers
connected to the sub-module could provide routing
update messages to it. This would normally be the
case, but in RIPv1DV.doe only those routers in the
forward (towards the destination) direction were
able to feedback their routing tables.

 Column 1 Column 2 Column
3

 Destination Hops Interface
Out

Row
1

{BRouteTable(1,1)}
1

{BRouteTable(1,2)}
16

{BRouteTab
le(1,3)}

0
Row

2
{BRouteTable(2,1)}

2
{BRouteTable(2,2)}

16
{BRouteTab

le(2,3)}
0

Row
3

{BRouteTable(3,1)}
3

{BRouteTable(3,2)}
16

{BRouteTab
le(3,3)}

0
Table 1: Shows how routing table information was
assigned to arrays within the Arena simulation of
the Distance Vector routing algorithm
(RIPv1DVc.doe)

In the RIPv1DVLoop.doe simulation, the egress
Router 5 (destination 2) sends a message to the
interior Router P that the link has ceased to work.
Router P adjusts its routing table accordingly,
setting the entry for destination 2 from one hop to a
hop count of sixteen, indicating it is unreachable.
The surrounding routers are notified of this at the
next update, but one of them tells P that it can get to
destination 2 via another route. This route may be
through Router Q, which has now been told its
route is unreachable. The routing loop starts from
this point and the hop count continues to increase
till the hop count gets to 16 in all routers by which
time the network knows there is a problem and
packets destined for Destination 2 are disposed of at
the ingress router. This is simulated by using the
hop count at Router P (which is a global variable)
and allowing packets destined for destination 2 to
only proceed if this count is less than 16. The
laboratory instructions included tables which the
students were expected to fill in by observing the
routing tables at each update epoch.

This simulation also was modified slightly to allow
similar operation to the Border Gateway Protocol
version 4 (BGPv4) such that when the link to
Destination 2 was broken, Router P (acting as a
BGP router) told all the other routers at exactly the
same time of this event and, of course, no routing
loop occurred.

Tadeusz A Wysocki
68

Figure 7: A snap shot of the simulator showing Routers A and B and the paths upon which packets and
routing messages will travel. The green lines are the paths followed by routing messages and the blue lines
are the paths followed by actual packets destined for one of the three destinations.

Figure 8: A section of the sub-module associated with Router B in the simulator RIPv1DVc.doe which
updates the routing table by carrying out a series of comparisons and assignments before the received
routing message is disposed of at the end of the routing messages processing.

 Column 1 Column 2 Column 3 Column 4
 Destination Metric Cost Interface Out Next Hop

Row 1 {r1_table(1,1)}
11

{r1_table(1,2)}
3

{r1_table(1,3)}
1

{r1_table(1,4)}
0

Row 5 {r1_table(5,1)}
15

{r1_table(5,2)}
4

{r1_table(5,3)}
3

{r1_table(5,4)}
3

Row 7 {r1_table(7,1)}
17

{r1_table(7,2)}
2

{r1_table(7,3)}
1

{r1_table(7,4)}
7

Table 8: Routing Table for link state simulator linkStateModel.doe, this example is for Router 1, Networks
11, 15 and 17 (in actuality the routing table has 9 rows for the 9 possible network destinations but only
Network 9 has been set up as a destination in the simulator).

Tadeusz A Wysocki
69

6. Link State Algorithms
The ARENA simulator was also used to illustrate
simple aspects of typical Link State routing
protocols, like OSPF. Unlike the Distance Vector
simulation, each node is expected to form a
topological database of the surrounding network.
To do this calculation using cascaded modules, as
implemented with the Distance Vector simulations,
would have involved very many such modules and
would have been very hard to test and debug. One
of the available features built into ARENA 3.5 is
the ability to use Visual Basic modules. ARENA
has its own Visual Basic module designer and these
modules can be activated on simulation events such
as RunBeginSimulation or upon the entry of a
entity into a VBA module.

Every VBA module has a unique ID associated
with it, and the name of the module in the Visual
Basic editor window is automatically allocated. For
example, the Visual Basic module associated with
VBA Block identifier 1 is “VBA_Block_1_Fire()”
and that associated with VBA Block indentifier 2 is
“VBA_Block_2_Fire()” [13].

Visual Basic modules are used in many Windows
based software packages. For example, Visual
Basic modules can be used with Office 97 suite of
products such as ACCESS ’97 An example of this
in which the primary author was involved in 2001
was a Power Quality database where Visual Basic
modules were used to analyse the acquired data
[14]. As ARENA is a Windows based product, it
can also use Visual Basic modules to provide extra
functionality that is not built into the normal
ARENA modules. The built-in Visual Basic editor
(accessible pressing the ALT and F11 keys
simultaneously) provides a fully functional
debugging environment with the ability to place
break points and then monitor local variables and
step through the Visual Basic code.

There are examples of using Visual Basic in
ARENA provided in [13]. These were used to form
the basic structure of the link state modules. Within
the Visual basic editor it is necessary to import the
global variables within the simulation into the VBA
modules local variables and after calculating the
resultant routing tables using the Shortest Path
Algorithm of Dijkstra, export these back into the
simulation so that packets can be routed through the
simulator. To do this many local variables were
declared in the Visual basic module. For example,

to get a reference to the array cell r2_table(1,2)
required the code:

g_r2table12 = g.SIMAN.SymbolNumber(“r2_table”,1,2)

To write this value back out to the simulation so
that routing of packets for router 2 could be
changed, the following code was required:

.VariableArrayValue(g_r2table12) = 3

An array called topo was set up in the ARENA
simulation which contained information about the
topological database for the simulated network.
This array had 18 rows and 5 columns. The third
column of the topo array represented the metric
cost for the corresponding link. The link
identification was provided in a topological tree
representation of Figure 9 as shown in Figure 10.
The laboratory instructions indicated what set of
values the students should set these link costs to
during the demonstration. This was done in the
Variables module so that different metric costs
could be assigned to individual paths through the
network. The network configuration chosen for the
simulation is shown in Figure 9. It allows for five
possible paths that the packets can be routed on. By
changing these metric costs the routing algorithm
would calculate the least total cost metric path
through the network and this would be used.

Figure 9: The Network used for the link state
routing algorithms demonstration.

A additional feature also implemented in the
simulator was a flag, called “LoadBalanceEnabled”
which when set to ‘1’ would allow the simulator to
choose paths (at strategically pre-selected routers)
to load balance the packets through the network in a
similar manner to that which could be used in an
actual OSPF implementation.

Within the lectures for the associated subject, the
students had been instructed in how to use the
Dijkstra algorithm to calculate the routing tables of
individual routers. The laboratory instructions

Tadeusz A Wysocki
70

asked the students to record in tables the resultant
routing tables that were produced by the simulation
for a given metric cost configuration. The structure
of the resultant routing tables was similar to that
shown in Table 1, except it had four columns
instead of three. The first column was the Network
destination identifier. For example, Net 1’s
identifier was 11 (all the Network identifiers
ranged from 11 through to 19, for Net 9 and the
Routers ranged from 1 through to 7, Router 1’s
identifier was ‘1’ and Router 7’s identifier was ‘7’).
The second column shows the metric cost from the
router it is in (example Router 1’s routing table).
The third column shows the interface number that
the packet should be forwarded to and the fourth
column shows the identification number of the next
router. These are shown in Table 2.

 The students were asked to verify that the
computer simulations results were the same as that
which the Dijastra algorithm would produce (as
they were).

Figure 10: The topological tree showing the
meaning of the third column of the topological
database, topo.

The use of Visual Basic was very appropriate for
implementing the Dijkstra algorithm. The
temporary database was placed in an array called
Tentative and then each branch starting at the router
that the VBA module was located in with minimum
cost was made permanent. This cycle was repeated
until all nodes (routers and networks) were
accounted for. The code itself does this two times

per loop. The first section should always deal with
routers (like R4) and the second section always
deals with networks (like Net4). Initially it was
found that sometimes, when link costs for a router
and network were the same the first section would
choose a Network link as the permanent path. This
caused the code to never converge and it also
resulted in erroneous routing tables. To solve this
problem, the first section had extra code added
which basically checks to see if there is a router
with the same minimum cost as a network node,
and if so, the router path is made permanent instead
of the network nodes path.

7. Observations
The use of computer simulation was effective in
teaching and demonstrating the dynamic routing
algorithms for both Distance Vector and Link state
routing. In the second laboratory (RIPv1DV.doe)
the students were asked to create the tables in their
laboratory notebooks. While this was effective, in
the third and fourth laboratories an excel
spreadsheet was used as a template. This allowed
the students to concentrate on the material that was
being illustrated. The feedback directly received
from some of the students indicated that this was a
more effective laboratory session than the second
one had been because the structure was available.
In teaching theory this is called scaffolding [15]. In
the next incarnation of these demonstrations a excel
spreadsheet template will also be used for this
second laboratory demonstration.

8. Final Remarks
Computer Simulation is an effective way to educate
undergraduates in dynamic routing algorithms. Its
use allows concepts that may be difficult to explain
and show through measurement to be illustrated.
The computer Simulation ARENA which has been
developed primarily for process simulation can also
be used to model and illustrate telecommunications
sub-systems such as those associated with dynamic
routing. This was used in undergraduate teaching
laboratories in spring session of 2001 within the
Bachelor of Internet Science and Technology
teaching programme. It was found to be an
effective way to convey understanding of
underlying dynamic routing protocols and their
operation.

REFERENCES
1. Uyless Black, 2000, “IP Routing Protocols:

RIP, OSPF, BGP, PNNI & Cisco Routing

Tadeusz A Wysocki
71

Protocols”, Prentice Hall Series in Advanced
Communications Technologies

2. Paul Cernick, Mark Degner, and Keith
Kruepke, 2000, “Cisco IP Routing Handbook”,
Professional Middleware, IDG books, pp 197-
198

3. Paul Cernick, Mark Degner, and Keith
Kruepke, 2000, “Cisco IP Routing Handbook”,
Professional Middleware, IDG books, pp 18-19

4. http://www.elec.uow.edu.au/people/staff/p.vial/
5. Paul Cernick, Mark Degner, and Keith

Kruepke, 2000, “Cisco IP Routing Handbook”,
Professional Middleware, IDG books, pp 20-21

6. Uyless Black, 2000, “IP Routing Protocols:
RIP, OSPF, BGP, PNNI & Cisco Routing
Protocols”, Prentice Hall Series in Advanced
Communications Technologies, pp. 112-113

7. Behrouz A Forouzan, 2000, “Data
Communications and Networking”, McGraw-
Hill, 2nd Edition pp. 633-640

8. “The Network Simulator ns-2”,
http://www.isi.edu/nsnam/ns/, visited October
2001

9. “OPNET”, http://www.mil3.com/, visited
October 2001

10. Mischa Schwartz, 1987, “Telecommunication
Networks: Protocols, Modeling and Analysis”,
Addison-Wesley, pp. 212-223

11. Two postgraduate sessional thesis projects in
the spring of 2001 were using ARENA to
model metering aspects of SNMPv3 (Simple
Network Management Protocol version 3) and
simple flow aspects of WDM (Wave Division
Multiplexing) Optical Routers. Both students
did these projects under Mr P J Vial (BE
(Hons 2 div 1) ME (Hons) DipEd Png)
supervision as part of their Master of
Engineering Studies program in Spring Session
2001, Mr Karthik Vilapakkam Nagarajan and
Mr Frank Nordhal on Optical Routing.

12. Uyless Black, 2000, “IP Routing Protocols:
RIP, OSPF, BGP, PNNI & Cisco Routing
Protocols”, Prentice Hall Series in Advanced
Communications Technologies, p. 104

13. W David Keltan, Randall P Sadowski, Deborah
A Sadowski, 1998, “Simulation with
ARENA”, McGraw Hill, covers ARENA 3.0

14. P.J.Vial, V W Smith, P J Vial, V J Gosbell & B
S Perera, “Database Design for Power Quality
Survey”, AUPEC 2001

15. M.D.Roblyer, Jack Edwards, Mary Anne
Havriluk, 1997, “Integrating Educational
Technology into Teaching”, Prentice Hall

16. David A Takus, David M Profozich, “ARENA
Software Tutorial”, Proceedings of the 1997
Winter Simulation Conference

17. Deborah Sadowski, Vivek Bapat, Glenn Drake,
“The ARENA Product family: Enterprise
modeling solutions”, Proceedings of the 1998
Winter Simulation Conference

http://www.elec.uow.edu.au/people/staff/p.vial/
http://www.isi.edu/nsnam/ns/
http://www.mil3.com/
Tadeusz A Wysocki
72

	Abstract
	Iintroduction
	Course Structure
	Dynamic Routing Algorithms
	ARENA in Modeling Telecommunications systems
	Distance Vector Algorithms
	Link State Algorithms
	Observations
	Final Remarks

