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Abstract—When a convolutional code is used to provide
forward error correction for packet data transmission, the
standard performance measures of convolutional codes, i.e.,
bit error rate and first-event error rate, become less useful.
Instead we are interested in the average probability of block
(or packet) error. In this paper a modified transfer function
approach is used to obtain a union bound on the block error
rate of terminated and tailbiting convolutional codes. The
performance of these block codes obtained from termination
and tailbiting is compared to the performance of some stan-
dard block codes for various information block lengths and
also compared to the sphere packing lower bound for opti-
mal block codes. The conclusion is that block codes derived
from convolutional codes form a competitive class of short
block length block codes.
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probability, packet error probability, union bound, ter-
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I. Introduction

We will consider the case where a rate R = 1/n, con-
straint length K (shift register memory elements + 1) con-
volutional encoder is used to encode a packet q of r binary
digits. The resulting encoded data packet will consist of
N = nr bits (disregarding termination effects treated in
the next section), due to the redundancy added by the
convolutional encoder. For a review on the encoding and
decoding of convolutional codes, refer to e.g., [1, ch. 4] [2,
ch. 11-13]. The encoded block of data will be transmitted to
the receiver, that is allowed to observe the N bits, assumed
here to have been disturbed independently in each position
(dimension) by a zero-mean Gaussian variable of variance
N0/2. The average block (or packet) error probability is
the probability Pr(q̂ �= q) that the receiver maximum-
likelihood (ML) decoder decodes the received block into
a message q̂ that was not transmitted. In this paper, a
union bound on the block error probability will be derived
and evaluated to compare certain short length block codes
obtained from convolutional codes to some other common
block codes of short block lengths.

II. Using a convolutional code as a block code

The standard application of convolutional codes is in
situations where a low bit error probability (as opposed
to block error probability) is desired, despite bad channel
conditions. Since no requirement is put on the block error
probability, the transmitted sequences may be very long,
so that the probability that the entire sequence will be de-

coded correctly goes to zero. The average bit error prob-
ability will however still be small for well designed codes
and reasonable bit-energy-to-noise ratios. In packet trans-
mission the situation is quite different; a small amount of
data bits (in the order of few hundred bits) are to be trans-
mitted and decoded without errors or a repetition will be
requested by the receiver.
Several strategies to turn a convolutional code into a

block code can be distinguished between among which
termination and tailbiting are two practical methods [3].
When zero-tail termination is applied the convolutional en-
coder is initially in a known state, which we assume to be
the zero state, and the message sequence is padded at the
end by K − 1 zeros, so that the encoder returns to the
zero state after having encoded the message. The price
that is paid for this is a fractional rate loss, since K − 1
known information bits are added to the original message.
If the original information block contained r bits, the out-
put codewords will be of length (r +K − 1)n, so that the
effective rate becomes

R′ = R

(
1− K − 1

r +K − 1
)
, (1)

where the term K−1
r+K−1 is the fractional rate loss and goes

to zero as r → ∞. The method of tailbiting [4] avoids the
problem of the fractional rate loss by letting the last K−1
information bits define the starting state of the encoder
and then clocking the encoder r times, so that exactly rn
encoded bits are produced. This means that no rate loss
occurs and that the encoding always starts and ends in the
same state, but not necessarily the zero state. The price
paid is the increased decoder complexity needed to estimate
the initial state of the encoder and a poorer weight distri-
bution of the derived block code (see section IV). Both
the outlined termination methods result in a number of
valid code sequences or codewords. By listing all these
codewords we obtain a set C, which is called the codebook.
This means that the convolutional code is turned into a
block code.
Both zero-tail termination and tailbiting will be consid-

ered in this paper. In section III, the union bound on the
error probability of a block code is revised and a method
of obtaining the necessary weight distributions is suggested
in section IV. In the final sections an application to packet
data systems is evaluated and results and comments are
given.
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III. Union bound on the error probability of
block codes

A common way to estimate the performance of a block
code is to use the union of the pair-wise error probabili-
ties of all codewords in the block code. For the case of a
white, Gaussian disturbance in each dimension, the pair-
wise error probability P2 of two codewords a and b, with
Hamming distance dH(a,b) > 0, is given as (assuming bi-
nary or quaternary phase-shift modulation)

P2 = Pr(a �= b) = Q
(√

2dH(a,b)γb/n
)
, (2)

where the Q-function is given by

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt. (3)

The probability P2 is the probability that the maximum
likelihood (ML) receiver decides in favor of codeword b
when codeword a was transmitted and only those two code-
words exist in the communication system codebook. In (2),
γb = Eb/N0 is the bit-energy-to-noise ratio of the bits en-
tering the decoder, where Eb is the bit energy and N0 is
the one-sided power spectral density of the white noise.
The average block-error probability, Pe, of the ML re-

ceiver is given by

Pe =
∑
a∈C

Pr(a transmitted)Pr(a not decoded) (4)

=
∑
a∈C

Pr(a transmitted)
∑
b∈C
b �=a

Pr
(
b̂ = b|a transmitted

)
,

where b̂ is the decoder decision on the transmitted en-
coded block. Since, there is a one-to-one (i.e., error-free)
mapping between the block b̂ and q̂, the above expres-
sion is indeed the average block error probability of ML
decoder output. It is common and reasonable to assume
that each codeword is equally likely to be transmitted, so
that Pr(a transmitted) = 2−r. However, the main prob-
lem with (4) is the probability terms in the second sum,
Pr(b̂ = b|a transmitted). In most cases of interest, there
is no tractable way of obtaining these probabilities, so in-
stead we try to obtain an upper bound on this sum. One
way to do this is to consider the union of the pair-wise
error probabilities of the transmitted vector a to all other
codewords. This yields,

Pe ≤
∑
a∈C

Pr(a transmitted)
∑
b∈C
b �=a

Q
(√

2dH(a,b)γb/n
)

= 2−r
∑
a∈C

∑
b∈C
b �=a

Q
(√

2dH(a,b)γb/n
)
. (5)

To come further, we use the fact that our convolutional
code is linear, and therefore the derived block code is also
linear. A linear block code has the appealing property that
the sum (over GF (2)) of any two codewords is also a code-
word, i.e., a+ b = c; a,b, c ∈ C. In particular, the all-zero

codeword must be part of any linear code. Linearity gives
us that all 2r terms in the inner sum over the codewords in
(5) are equal, so that for linear block codes (5) simplifies
to

Pe ≤
∑
b∈C
b �=0

Q
(√

2dH(0,b)γb/n
)
, (6)

where we have assumed that the all-zero codeword is trans-
mitted. We observe that the only code dependent param-
eter in this expression is the function dH(0,b), the Ham-
ming weight of the binary vector b. Therefore, if we de-
fine the weight distribution function w(d) as the number of
codewords in C having Hamming weight d, we may further
simplify the union bound of (6) to

Pe ≤
dmax∑
d=1

w(d)Q
(√

2dγb/n
)
, (7)

where dmax is the maximum Hamming weight of any code-
word in C. Note that the sum starts at d = 1 to exclude
the transmitted all-zero codeword. For zero-tail terminated
convolutional codes, dmax ≤ (r + K − 1)n, while for tail-
biting convolutional codes, dmax ≤ rn.
The evaluation of (7) only requires knowledge of the

weight distribution w(d) of the code, which is significantly
easier to obtain than finding closed forms for the expres-
sions we started with, i.e., (4). The price paid for this
simplification is that (7) is an upper bound on the error
probability and therefore, at best, it is a good approxima-
tion to the true error probability. In general, it is necessary
to do computer simulations to establish over what range
this approximation is valid.

IV. Finding the weight distribution

The generation of output sequences from a convolutional
encoder is conveniently described by the encoder state dia-
gram. In figure 1 the state diagram of an R = 1/2, K = 3,
maximum free distance convolutional code [5] is shown.
The state diagram is seen to be a weighted, directed graph,

JD
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JD JD

JD2

JD2

JJ X0

X1

X3

X2

Fig. 1. State diagram for a R = 1/2, K = 3 convolutional encoder.

where the weights on the graph edges (transitions between
states) are called indeterminates and represent some prop-
erty that will accumulate as the vertices (states) are tra-
versed. In the example diagram of figure 1, J enumerates
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how many transitions that are made and D enumerates the
Hamming weight of the encoded bits on each transition.
The exponents of D are encoder properties and need to
be carefully selected to obtain good codes (usually through
computer search, see e.g., [5]).
For the present problem we need to be able to find the

path enumerators of all paths through the state diagram
starting and ending in the same state Xi after L transi-
tions, where L = r + K − 1 for terminated convolutional
codes and L = r for tailbiting convolutional codes. To
find the path enumerators, we modify the standard trans-
fer function method of finding the distance properties of
convolutional codes as described in [1, sect 4.3]. In the
modified scheme, the enumerators for all paths starting
and ending in state Xi are obtained by adding to the state
diagram a starting and ending state and connecting them
appropriately. This is illustrated for state X0 in figure 2
for the example encoder. Since the encoding is constrained
to start in state X0, the state δ is introduced. The connec-
tions from δ to the other states are the same as forX0 (refer
to figure 2). In the same way, the state X4 is introduced
as a collecting state. By letting the starting state δ = 1,
the ending state X4 will account for all paths through the
state diagram starting and ending in state X0. Note that
all possible code sequences starting and ending in state
X0 are counted and not only unmerged sequences, as is
normal for evaluating convolutional code performance. To
further clarify the procedure, the modified state diagram
used to find the enumerators for all paths starting and end-
ing in state X1 is shown in figure 3. Note that the original
state diagram remains unchanged and the only thing that
changes are the connections (and the weights) from the
added starting and ending states.

JDJD

JD

JD

JD2

JD2 JD2

JD2

J J

J

J

δ

X0

X1

X3

X2 X4

Fig. 2. Modified state diagram for a R = 1/2, K = 3 convolutional
encoder. X4 enumerates all paths starting and ending in state X0.

The modified state diagrams in figures 2 and 3 describes
a system of equations in 5

(
= 2K−1 + 1

)
unknowns (one

for each node, minus the initial state, since δ = 1),

Mixi = ri (8)

where Mi is an
(
2K−1 + 1

) × (
2K−1 + 1

)
matrix and the

index i ∈ {0, 1, . . . , 2K−1 − 1} indicates for what starting
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Fig. 3. Modified state diagram for a R = 1/2, K = 3 convolutional
encoder. X4 enumerates all paths starting and ending in state X1.

and ending state Xi the solution is valid. The right-hand
side vector, ri, is a vector containing the weights on the
transitions from the starting state δ.
It is illustrative to explain how the matrix equation in

(8) is obtained. The starting point is the state transition
matrix, i.e., the matrix containing the weights of all tran-
sitions of the state diagram in figure 1. For this example
encoder, the state transition matrix is

A =




J JD2 0 0
0 0 JD JD

JD2 J 0 0
0 0 JD JD


 (9)

where matrix element akl is the path enumerator for the
transition from state k to state l (the path enumerator is
set to zero if no such transition is available). Note that
this indexing convention is slightly different from what is
normal for matrices, since the upper left element with this
convention is a00 and not a11 as is more common. Let
the columns of the matrix A be labeled by A[j] and the
rows by A′[j], where the first column (or row) is given by
j = 0. Next, if we are interested in all paths starting and
ending in a particular state, Xi, we form a new matrix Bi

by appending to A the ith column of A and making it
square by appending a row of 2K−1 + 1 zeros. This means
that this new matrix has the form

Bi =
[
A A[i]
0 0

]
(10)

From Bi the matrix Mi is obtained as

Mi = I − B′
i (11)

where I is the identity matrix and the prime indicates ma-
trix (or vector) transpose. The right hand side vector ri is
simply

ri = [A′[i] 0]′ (12)

For zero-tail (zt) terminated convolutional codes we are
interested in the solution for i = 0, so that for our present
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example we obtain




1− J 0 −JD2 0 0
−JD2 1 −J 0 0
0 −JD 1 −JD 0
0 −JD 0 1− JD 0
−J 0 −JD2 0 1







X0

X1

X2

X3

X4


 =




J
JD2

0
0
0




From the solution of this system of equations, the desired
transfer function is obtained fromX4[i = 0] ≡ X4[0], where
we have emphasized that the solution was obtained for
paths starting and ending in state X0. In this case,

Tzt(D,J) = X4[0] =
J2 − (J3 + J4)D + (J3 + J4)D5

1− J − (J − J3)D − J3D5

Since the indeterminate J enumerates the number of tran-
sitions, the weight spectrum of a block code obtained
from zero-tail termination after L transitions is found from
the coefficient of the factor JL of the serial expansion of
Tzt(D,J). This coefficient, which is a polynomial in D, is
the weight distribution of the block code. For example, a
block code obtained from L = 6 transitions (information
block length r = L − K + 1 = 4) in the modified state
diagram of figure (2) has weight distribution polynomial

W6(D) = 1 + 4D5 + 5D6 + 4D7 +D8 +D10.

For tailbiting codes, we are interested in the weights of
the collection of all paths starting and ending in each of
the states Xi after L transitions. There are several possible
ways of obtaining this collection, but the straight-forward
approach is to realize that, since all paths starting and
ending inXi are accounted for by the last element (X4[i]) of
the solution vector xi, the collection of paths is accounted
for by

Ttb(D,J) =
2K−1−1∑

i=0

X4[i] (13)

so that the system of equations in (8) needs to be solved
2K−1 times to get Ttb(D,J). The weight distribution of the
block code formed from the tailbiting convolutional code
is now found in exactly the same way as for the zero-tail
termination case, as described above. For example, the
weight distribution of a block code obtained from tailbiting
of the example convolutional code discussed above with
L = 4 transitions (information block length r = L = 4)
is given in the third column of table II. It is seen from
the table that the free distance of the tailbiting code is
only 2, whereas it is 5 for the terminated code of the same
information block length, but this apparent drawback is
counteracted by the fractional rate loss of the terminated
code, which reduces the effective bit-energy-to-noise ratio
for the terminated code.
Other ways of obtaining the weight distributions dis-

cussed above and related weight distributions can be found
in [3, 4].

V. Application in packet data systems

As an interesting application of the above suggested
methods, let us consider a communication system where
data is transmitted in small bursts of less than 100 infor-
mation bits at a time. We assume that each data packet is
encoded by a rate 1/2 encoder (block or convolutional), but
that no additional latency is tolerated. This means that
the encoder is not allowed to wait for additional packets to
arrive and treat these as longer blocks during encoding.
Apart from the terminated and tailbiting convolutional

codes, we also assume three different quadratic residue
(QR) block codes to be used, all of rate 1/2; the Ham-
ming (8,4,4), the Golay (24,12,8) and the quadratic residue
(48,24,12) codes [6, ch. 16]. Standard block code notation
is used here; (N,m, d), where N is the coded block length,
m is the input information block length and d is the small-
est Hamming distance between any two codewords in the
code. For convolutional codes, the notation is (n, k,K),
where n and k are the number of input bits and coded out-
put bits per cycle, respectively, and K, as before, is the
constraint length.
The block error rates of the QR codes will be compared

to the block error rates of terminated and tailbiting con-
volutional codes of various constraint lengths using the
methods described in section IV. For all codes, maximum-
likelihood decoding is assumed, where the complexity (in
terms of trellis edge evaluations per decoded bit) of ML
decoding of the QR block codes above is roughly compara-
ble to ML decoding of convolutional codes with constraint
lengths 3, 7 and 15, respectively [7, 8].

VI. Results and simulations

We start out by giving the detailed calculations for the
simplest codes studied here; the Hamming (8,4,4) code and
the terminated and tailbiting convolutional codes of con-
straint length K = 3. In table I the weight distribution of
the Hamming (8,4,4) code [6, p. 597] is given along with
the weight distributions for the Golay (24,12,8) [6, p 597]
and the quadratic residue (48,24,12) [6, p. 604] codes.

TABLE I

Weight distributions of Hamming (8,4,4), Golay (24,12,8) and

quadratic residue (48,24,12) block codes.

d wH(d) wG(d) wQR(d)
0 1 1 1
4 14 0 0
8 1 759 0
12 0 2576 17296
16 0 759 535095
20 0 0 3995376
24 0 1 7681680
28 0 0 3995376
32 0 0 535095
36 0 0 17296
48 0 0 1
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If we assume that the information packet consists of r =
mp bits, where p ∈ Z+ and m = 4 for the Hamming (8,4,4)
code, the encoder will output p blocks of N = 8 encoded
bits each. For the entire encoded packet of 8p bits to be
received without error, each of the p encoded blocks must
be correctly received. Therefore, the probability that the
packet is received in error is given by

Pw = 1− (1− Pe)p (14)

where Pe is the probability that an encoded sub-packet
is erroneously decoded, which is given by (7) and evalu-
ated using the weight distribution in the second column of
table I.
For a terminated convolutional code, on the other hand,

the entire information block of r bits can be encoded and
only in the end it needs to be terminated by appending
K − 1 zeros. The effective rate of a terminated rate 1/2
convolutional code of constraint length K as a function of
r is according to (1),

R′ =
r

2(r +K − 1) =
1
2
− K − 1
2(r +K − 1) (15)

so that R′ → 1/2 as r → ∞, as expected. As r gets
larger, the number of codewords will of course increase,
but the free distance of the block code derived from ter-
mination will not change. Instead, the multiplicities of the
low order terms of w(d) increase, as can be seen from table
II. In this table, the weight distributions for r = 4, r = 6
and r = 8 information bits per encoded block is given. For
the block codes derived from tailbiting the free distances
starts at low values, increasing until the free distance is the
same as for the terminated codes. To make fair compar-
isons between the block codes, the tailbiting convolutional
codes and the terminated convolutional codes, the effective
bit-energy will be lowered for the terminated convolutional
codes according to the rate reduction of (15).
In figure 4 the bit-energy-to-noise ratio required to

achieve Pw = 10−4 (or Pe = 10−4 for convolutional codes)
on an additive, white, Gaussian noise (AWGN) channel
is plotted as a function of the information block size for
the QR codes and the K = 3 tailbiting and terminated
convolutional codes. The performance of the QR codes is
evaluated using (14) and for the convolutional codes (7)
is used. Also included for comparison is the sphere pack-
ing lower bound (spb) on the performance of the optimal
codes for each r [7, 9–11]. This bound is a better alterna-
tive for comparison in this case (and many others) than
the channel capacity (which gives Eb/N0 = 0 dB for this
case), since the channel capacity is assuming infinite block
length. The bound shown is valid for the continuous-input
AWGN channel, which makes it slightly too optimistic in
the comparison made here.
It is obvious from figure 4 that the QR codes all perform

very well for their shortest block lengths (within 0.7 dB of
an optimal code), but they all start to deviate as the block
length is increased. The terminated and tailbiting convo-
lutional codes also perform well at short block lengths, the

TABLE II

Weight distributions of block codes obtained via

termination (zt) and tailbiting (tb) of a R = 1/2, K = 3

convolutional code for r = 4, 6 and 8 information bits.

d w(d)
r = 4 r = 6 r = 8

zt tb zt tb zt tb

0 1 1 1 1 1 1
1 0 0 0 0 0 0
2 0 2 0 0 0 0
3 0 4 0 2 0 0
4 0 1 0 9 0 2
5 4 4 6 12 8 24
6 5 4 9 13 13 36
7 4 0 12 18 20 40
8 1 0 12 6 28 57
9 0 0 6 0 32 40
10 1 0 3 3 38 20
11 0 0 8 0 40 24
12 0 0 3 0 40 12
13 0 0 0 0 24 0
14 0 0 0 0 5 0
15 0 0 0 0 4 0
16 0 0 0 0 3 0
R′ 1/3 1/2 3/8 1/2 2/5 1/2

terminated code being slightly superior for the very short-
est block lengths, but as the block lengths increase, the
performance curves flattens out. It is interesting to note
that the slope of all the curves as the block length increases
is very similar.
Regarding the decoding complexity of the codes, the de-

coding complexity of the Hamming (8,4,4) code and the
terminated code is similar, whereas the ML decoding of the
tailbiting code requires one pass of the Viterbi algorithm
for each state (2K−1), so that it is 4 times more complex
for this case. However, at least for block lengths above 50,
the gain of the tailbiting code is marginal over the termi-
nated code, and the increased complexity is perhaps not
motivated. Note that there are several sub-optimal decod-
ing procedures suggested for tailbiting codes (see e.g., [4]),
that would reduce the complexity difference (but also the
coding gain), but this is not considered here.
In figure 5 the same comparison is made, but the con-

straint length of the convolutional code is increased to
K = 5 and the interesting region is zoomed in on, so that r
ranges from 1 to 48. The decoding complexity of this con-
volutional code is much less than the Golay (24,12,8) code
(see section V), but still it is seen that the tailbiting code
outperforms the Golay code over almost the entire range
of block lengths. For block lengths above 40 both the ter-
minated and the tailbiting codes perform better. Another
interesting observation is made in this figure, the heavy
variations of the required Eb/N0 for the tailbiting codes of
shorter block lengths. This is a result of the truncation ef-
fects that occur when the paths through the state diagram
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Fig. 4. Plot showing the bit-energy-to-noise ratio required to achieve
Pw = 10−4 on an AWGN channel for various short R = 1/2 block
codes. The terminated and tailbiting convolutional codes have con-
straint length K = 3. The information block size ranges from 1 to 96.
Included for comparison is the sphere packing lower bound, which is
a lower bound on the performance of the optimal codes.

are required to start and end in the same state.

VII. Conclusions

A method to calculate the union bound on the aver-
age block-error probability of a block code obtained from
a zero-tail terminated or tailbiting convolutional code is
given. The only code dependent quantity needed to eval-
uate the performance is the weight distribution of the de-
rived block code, and a method to obtain the weight dis-
tribution of both terminated and tailbiting convolutional
codes is given. The proposed method involves a minor
modification to the well known procedure to obtain the
transfer function of a convolutional code given in, e.g., [1].
The union bound was applied to terminated and tailbiting
rate 1/2 convolutional codes of constraint lengths K = 3
and K = 5 and the performance was compared to that of
three common rate 1/2 quadratic residue codes. For com-
parable complexity, it was seen that the block codes derived
from convolutional codes outperformed the QR codes and
that the tailbiting codes are superior to the terminated
codes, except for the very shortest block lengths. However,
when the information block lengths exceed 50 bits, the en-
ergy gain becomes marginal. It is concluded that block
codes derived from convolutional codes forms an attractive
class of block codes that perform very well compared to the
QR block codes of similar decoding complexity studied in
this paper.
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