Is Matsumoto’s Generalization of the Feng-Rao Designed Minimum Distance for Binary Linear Codes Effective?

Junru Zheng†, Takayasu Kaida‡, Kyoki Imamura†

† Department of Computer Science and Electronics, Kyushu Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8501 JAPAN
e-mail: {zheng,imamura}@capricorn.cse.kyutech.ac.jp
‡ Department of Information and Electronic Engineering, Yatsushiro National College of Technology 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501 JAPAN
 e-mail: kaida@as.yatsushiro-nct.ac.jp

Abstract

The definition of the Feng-Rao designed minimum distance, first introduced into algebraic geometry codes, has been extended to the case of general linear codes by Miura. In Miura’s definition the Feng-Rao designed minimum distance \(d_{FR} \) is determined by an ordered basis related to a given linear code over a finite field \(\mathbb{F}_q \). Matsumoto gave a generalized definition \(\hat{d}_{FR} \) of \(d_{FR} \) with three ordered bases \(W_n, U_n, V_n \). The basis \(W_n \) is used for defining the linear code, and the bases \(U_n \) and \(V_n \) are used for computing a syndrome matrix. We have Miura’s definition if we assume \(U_n = V_n = W_n \) in Matsumoto’s definition. In this paper we discuss the choice of three bases by Matsumoto’s definition for binary linear codes. From some properties and some numerical examples of Matsumoto’s \(\hat{d}_{FR} \) we conjecture that Matsumoto’s generalization is not so effective for binary linear codes compared with Miura’s definition.

Keywords: binary linear code, Feng-Rao designed minimum distance, ordered basis, Miura’s definition, Matsumoto’s definition.

1 Introduction

The Feng-Rao designed minimum distance and the Feng-Rao decoding were originally introduced into algebraic geometry codes [1]. They have been extended to the case of general linear codes over a finite field by Miura [3]. Miura’s definition of the Feng-Rao designed minimum distance \(d_{FR} \) for an \((n, k)\) linear code \(C \) over a finite field \(\mathbb{F}_q \) of order \(q \) depends on the choice of an ordered basis \(W_n = \{w_1, w_2, \ldots, w_n\} \) of the vector space \(\mathbb{F}_q^n \) with dimension \(n \) over \(\mathbb{F}_q \). It is interesting to find such an optimum ordered basis \(W_n \) as \(d_{FR} \) is maximum, since the Feng-Rao decoding algorithm can correct up to \(\lfloor (d_{FR} - 1)/2 \rfloor \) errors. Recently the authors showed some properties of the Feng-Rao designed minimum distance \(d_{FR} \) by Miura for binary codes and cyclic codes [4, 5]. Recently the definition of \(d_{FR} \) of linear codes has been slightly generalized by Matsumoto [2], which uses three ordered bases \(U_n = \{u_1, u_2, \ldots, u_n\}, V_n = \{v_1, v_2, \ldots, v_n\} \) and \(W_n = \{w_1, w_2, \ldots, w_n\} \) of \(\mathbb{F}_q^n \) instead of one in case of Miura’s definition, i.e., \(W_n \) is used for defining the linear code, and \(U_n, V_n \) are used for computing a syndrome matrix in Matsumoto’s definition and Miura’s definition is included by assumption \(U_n = V_n = W_n \).

In this paper we discuss the choice of three bases by Matsumoto’s definition for binary linear codes. Consequently we conjecture that Matsumoto’s generalization for binary linear codes is not so effective compared with Miura’s definition by some properties and some numerical examples of Matsumoto’s \(d_{FR} \).

2 Definitions and properties of the Feng-Rao Designed Minimum Distance

In this section we will briefly review results of [3] and [2] necessary for the following discussions in this paper.
For two vectors $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ and $\mathbf{y} = (y_1, y_2, \ldots, y_n) \in F_q^n$, their product \mathbf{xy} is defined as $\mathbf{xy} = (x_1y_1, x_2y_2, \ldots, x_ny_n) \in F_q^n$. We will call $W_n = \{w_1, w_2, \ldots, w_n\} \subseteq F_q^n$ an ordered basis of F_q^n if W_n is a basis of F_q^n and the ordering of n vectors w_1, w_2, \ldots, w_n has meaning. The subset W_i of W_n is defined by $W_i = \{w_1, w_2, \ldots, w_i\}$ for $1 \leq i \leq n$.

Definition 1 For a vector $\mathbf{b} \in F_q^n$, the map of an ordered basis W_n denoted by $\sigma: F_q^n \to \{0, 1, 2, \ldots, n\}$ is defined as

$$\sigma(\mathbf{b}) = \min\{i | \mathbf{b} \in \text{Span}\{W_i\}, 0 \leq i \leq n\},$$

where $\text{Span}\{W_i\}$ is a subspace of W_i spanned by W_i and $\text{Span}\{W_0\} = \{0\}$.

Definition 2 Let $u_i \in U_n$, $v_j \in V_n$. The product u_i, v_j of u_i and v_j for an ordered basis W_n is said to be well-behaved if $\sigma(u_i, v_j) < \sigma(u_i, v_j)$ for any $1 \leq u \leq i$, $1 \leq v \leq j$, $(u, v) \neq (i, j)$.

Let W be a subset of an ordered basis W_n of F_q^n. The linear code $C(W, W)$ over F_q is defined as

$$C(W, W) = \text{Span}\{W\}^\perp \subseteq F_q^n,$$

where $\text{Span}\{W\}^\perp$ means the set of all vectors in F_q^n orthogonal to $\text{Span}\{W\}$.

2.1 Miura’s Definition of the Feng-Rao Designed Minimum Distance d_{FR}

Definition 3 For $1 \leq s \leq n$, we define $N(s)$ as

$$N(s) = \{ (i, j) | \sigma(u_i, v_j) = s, 1 \leq i \leq j \leq n, u_i, v_j \text{ is well-behaved} \},$$

where \mathbb{A} means the cardinality of set \mathbb{A}. For an ordered basis W_n of F_q^n, we define $N(W_n)$ as $N(W_n) = (N(1), N(2), \ldots, N(n))$.

Lemma 1 [3] We have $0 \leq N(s) \leq s$, for $1 \leq s \leq n$.

Definition 4 The Feng-Rao designed minimum distance of the linear code $C(W, W)$ is denoted as $d_{FR}(C, W)$ and defined as

$$d_{FR}(C, W_n) = \min \{N(s)|w_s \in W_n \setminus W, 1 \leq s \leq n\},$$

where $W_n \setminus W$ is the subset of W_n without the elements of W.

We will use the notation $d_{FR}(C, W_n)$ to show the ordered basis W_n explicitly.

Lemma 2 [3] Let d be the true minimum distance of $C(W_n, W)$. Then we have $d \geq d_{FR}(C, W_n)$.

For a fixed linear code C we can choose many bases W_n such that $C = C(W_n, W)$.

Definition 5 For a linear code C we define the set of all ordered bases such that C can be defined by this ordered basis, i.e.,

$$W(C) = \{W_n | W_n \subseteq W_n \text{ s.t. } C = C(W_n, W)\}.$$

Note that W is uniquely determined from C and W_n. Our purpose is to give an optimum ordered basis W_n for a given linear code C.

Definition 6 The Feng-Rao designed minimum distance $d_{FR}(C)$ of C by Miura is defined as

$$d_{FR}(C) = \max\{d_{FR}(C, W_n)|W_n \in W(C)\}.$$

The ordered basis W_n satisfying

$$d_{FR}(C) = d_{FR}(C, W_n)$$

is called an optimum ordered basis for C.

2.2 Properties of Miura’s d_{FR}

Next we will consider only binary linear codes over F_2. The following lemma [3, Lemma 3.3] and its corollary [3, Corollary 3.4] are essential in our discussions. We will quote them in case of binary linear codes, although Miura proved them in case of linear codes over any F_q. We will give their proof for the convenience of readers who will find difficulty in obtaining Miura’s thesis [3].

Lemma 3 Let $W_n = \{w_1, w_2, \ldots, w_n\}$ be an ordered basis of F_q^n and $w \in F_q^n$. If $\sigma(w, w) < t \leq n$, then there exists at least one i such that $\sigma(w_i, w) \leq \sigma(w, w)$ and $1 \leq i < t$.

Proof We will show a contradiction if we assume

$$\sigma(w_i, w) < \sigma(w, w) \text{ for } i = 1, 2, \ldots, t-1. \tag{1}$$

Let $\sigma(w_i, w) = s < t$. We have

$$w_i = \alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_s w_s, \quad \alpha_s \neq 0. \tag{2}$$

From the assumption (1) we also have

$$w_i = \beta_{s+1} w_1 + \beta_{s+2} w_2 + \cdots + \beta_{s+1-s} w_{s-1}. \tag{3}$$

We have $ww = w$ for any binary vector w and we have

$$w_i w = w_i w = (w_i w) w = (\alpha_1 w_1 + \cdots + \alpha_s w_s) w = \alpha_1 w_1 w + \cdots + \alpha_s w_s w \tag{4}$$
from (2). However (2) and (4) are contradiction, since the term \(\alpha, w_i \) in (2) is missing in the right-hand side of (4) because of (3).

Corollary 1 If \(\sigma(w_i w_j) = s \) and \(w_i w_j \) is well-behaved, then we have \(1 \leq i, j \leq s \).

Proof If we assume \(i > s \), then application of Lemma 3 with \(t = i \) and \(w = w_j \) shows that \(w_i w_j \) is not well-behaved from the definition of well-behavedness. The proof of \(j \leq s \) is the same.

Therefore we will prove the following theorem shown in [5].

Theorem 1 Any binary linear code has \(d_{FR}(C, W_n) \) equal to either one or an even number.

This theorem tells that binary linear codes can not have an odd \(d_{FR}(C, W_n) \geq 3 \). Our proof of Theorem 1 is very simple as shown below.

First we use the following property which is obvious from the definition.

Lemma 4 If \(w_i w_j(i \neq j) \) is well-behaved, then \(w_j w_i \) is also well-behaved.

Next we use the following lemma which is almost obvious from Corollary 1.

Lemma 5 If \(w_i w_i \) is well-behaved of \(W_n \), then \(N(i) = 1 \).

Proof For a binary vector \(w_i \) we have \(w_i w_i = w_i \) and \(\sigma(w_i w_i) = i \). There can not exist another \(w_u w_v \), \((u, v) \neq (i, j) \) which satisfies the condition that \(\sigma(w_u w_v) = i \) and \(w_u w_v \) is well-behaved, since such \(w_u \) and \(w_v \) must satisfy \(1 \leq u, v \leq i \) from Corollary 1 and \(\sigma(w_u w_v) \) must be less than \(i \) because of \(w_i w_i \) being well-behaved.

Proof of Theorem 1 We have \(N(1) = 1 \) because of \(\sigma(w_1 w_1) = 1 \).

If \(w_i w_i \) is not well-behaved for \(i \geq 2 \), then \(N(i) \) is even for \(i \geq 2 \) from Lemma 5. Therefore we have Theorem 1.

If there exists such a \(w_i \in W_n \backslash W \) as \(w_i w_i \) is well-behaved, then we have \(N(i) = 1 \) from Lemma 5 and \(d_{FR}(C, W_n) = 1 \) from the definition of \(d_{FR}(C, W_n) \).

2.3 Matsumoto’s Definition of Feng-Rao Designed Minimum Distance

Miura’s definition of the Feng-Rao designed minimum distance has been generalized to \(d_{FR} \) by Matsumoto [2].

Definition 7 For \(1 \leq s \leq n \), we define \(\hat{N}(s) \) as

\[
\hat{N}(s) = \{ (i, j) \mid \sigma(w_i w_j) = s, 1 \leq i, j \leq n, w_i w_j \text{ is well-behaved} \}.
\]

For an ordered basis \(W_n, U_n \) and \(V_n \) of \(F_q^n \) we define \(\hat{N}(W_n, U_n, V_n) \) as \(\hat{N}(W_n, U_n, V_n) = \{ \hat{N}(1), \hat{N}(2), \ldots, \hat{N}(n) \} \).

Our numerical experiments in case of all \((7, k)\) linear codes by generating all the possible set of three bases show \(\hat{N}(1) \leq 1 \) and \(\hat{N}(2) \leq 2 \). So we have the following conjecture.

Conjecture 1 We have \(0 \leq \hat{N}(s) \leq s \), for \(1 \leq s \leq n \).

Definition 8 The Feng-Rao designed minimum distance by Matsumoto of the linear code \(C(W_n, W) \) is denoted as \(d_{FR}(C, W_n, U_n, V_n) \) and defined as

\[
d_{FR}(C, W_n, U_n, V_n) = \min \{ \hat{N}(s) \mid w_s \in W_n \backslash W, 1 \leq s \leq n \}.
\]

Lemma 6 [2] Let \(d \) be the true minimum distance of \(C(W_n, W) \). Then we have \(d \geq d_{FR}(C, W_n, U_n, V_n) \).

Definition 9 For a linear code \(C \) we define the set of all triples with three ordered bases such that \(C \) can be defined by an ordered basis \(W_n \), i.e.,

\[
T(C) = \left\{ (W_n, U_n, V_n) \mid \exists W \subseteq W_n \text{ s.t. } C = C(W_n, W) \text{ and } U_n, V_n \text{ are ordered bases of } F_q^n \right\}.
\]

Note that \(W \) is uniquely determined from \(C \) and \(W_n \). Moreover \(U_n \) and \(V_n \) are not concerned with the linear code \(C \). Our purpose is to give an optimum triple of three ordered bases \((W_n, U_n, V_n)\) for a given linear code \(C \).

Definition 10 The Feng-Rao designed minimum distance \(d_{FR}(C) \) by Matsumoto is defined as

\[
d_{FR}(C) = \max \{ d_{FR}(C, W_n, U_n, V_n) \mid (W_n, U_n, V_n) \in T(C) \}.
\]

The triple of three ordered bases \((W_n, U_n, V_n)\) satisfying \(d_{FR}(C) = d_{FR}(C, W_n, U_n, V_n) \) is called an optimum triple for \(C \).

2.4 An Example of Matsumoto’s \(\hat{d}_{FR} \)

Next we will consider only binary linear codes over \(F_2 \). First, we show an example of a triple of three bases in order to discuss Matsumoto’s generalization of \(d_{FR} \).
Example For (7,4) linear code, let three ordered basis be as follows:

\[
\begin{align*}
w_1 &= u_1 = (1\ 0\ 1\ 1\ 1\ 0\ 0), \\
w_2 &= u_2 = (0\ 1\ 0\ 1\ 1\ 1\ 0), \\
w_3 &= u_3 = (0\ 0\ 1\ 0\ 1\ 1\ 1), \\
w_4 &= u_4 = (0\ 0\ 0\ 1\ 1\ 0\ 0), \\
w_5 &= u_5 = (0\ 0\ 0\ 0\ 0\ 1\ 1), \\
w_6 &= u_6 = (0\ 0\ 0\ 1\ 0\ 1\ 0), \\
w_7 &= u_7 = (0\ 0\ 0\ 0\ 0\ 1\ 0).
\end{align*}
\]

\[
\begin{align*}
v_1 &= (0\ 0\ 0\ 0\ 0\ 1\ 0), \\
v_2 &= (0\ 0\ 0\ 0\ 0\ 1\ 1), \\
v_3 &= (1\ 0\ 1\ 1\ 1\ 0\ 0), \\
v_4 &= (0\ 0\ 0\ 1\ 1\ 0\ 0), \\
v_5 &= (0\ 1\ 0\ 1\ 1\ 1\ 0), \\
v_6 &= (0\ 0\ 1\ 0\ 1\ 1), \\
v_7 &= (0\ 0\ 0\ 1\ 0\ 0).
\end{align*}
\]

Since the matrix of \(\sigma(u_i v_j)\) is

\[
\begin{bmatrix}
0 & 0 & 1 & 4 & 4 & 5 & 7 \\
7 & 7 & 4 & 4 & 2 & 6 & 6 \\
7 & 5 & 5 & 7 & 6 & 3 & 7 \\
0 & 0 & 4 & 4 & 4 & 7 & 7 \\
7 & 5 & 0 & 0 & 7 & 5 & 7 \\
7 & 7 & 7 & 7 & 6 & 7 & 6 \\
7 & 7 & 0 & 0 & 7 & 7 & 7
\end{bmatrix}.
\]

Above matrix \(\sigma(u_i v_j)\) shows that \(\sigma(u_1 v_3) = 1\) and \(u_1 v_3\) is well-behaved, which contradicts with Corollary 1. Therefore in Matsumoto’s definition we don’t have Lemma 3 and Corollary 1, which are used in proving Theorem 1.

However, our numerical experiments on \((7,k)\) binary codes strongly suggest the following conjecture which is the same our previous Theorem 1.

Conjecture 2 Any binary linear code has \(\hat{d}_{FR}(C, W_n, U_n, V_n)\) equal to either one or an even number.

3 Conclusion

In this paper we discussed Miura’s definition and Matsumoto’s definition of the Feng-Rao designed minimum distance for binary linear codes. Matsumoto’s definition is a generalization of Miura’s definition. Some properties and examples induce some conjectures which tell Matsumoto’s generalization is not effective compared with Miura’s definition for binary linear codes.

Future works are giving proofs for these conjectures and investigate nonbinary linear codes.

References

