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Abstract: 
A continuous wavelet transform, with Morlet wavelets 
as the basis functions, is used to map speech into the 
time-frequency domain.  Forward and inverse FFT 
routines are used to implement the wavelet 
transforms.  A coefficient covariance matrix is 
defined and an Eigenvalue decomposition is used to 
optimally determine significant wavelet based filters 
that accurately represent speech and potentially 
identify different speakers.  
 
Key words: speaker recognition, wavelet 
transform, Morlet, Eigenvalue decomposition 
 
1. Introduction: 
Human perception of speech is, in part, reliant on 
detection of formant frequencies and their transitions 
times.  Subjects utilize formant transition length to  
categorise sounds  [2]. Real time speaker recognition 
is an active area of speech research.  One possible 
explanation for the failure of existing algorithms to 
identify speakers is the accuracy of the signal analysis 
used, in characterising, for example, stop consonants 
[3].  A simple speaker recognition system generally 
consists of two stages.  Firstly, the purely time series 
data filtered and mapped into a domain more suited to 
feature extraction.  Many existing schemes use a 
windowed FFT algorithm to map speech data into a 
time-frequency domain.  Secondly, the transformed 
data is compared with prior knowledge about a 
library of speakers to find a match.  In order to obtain 
reasonable speech recognition the transformed signal 
must have both localised time and frequency 
resolution, i.e. the ability to capture non-stationary 
aspects of speech such as stop-constants. The 
windowed FFT process used by many speech 
recognition systems provides excellent information 
on formant frequencies and slower transitions, 
however, it has serious deficiencies in representing 
stop consonants and other key sounds used by 
humans in speech recognition. 
In this paper we propose a wavelet-based analysis of 
speech using an Eigenvalue decomposition of the 

covariance matrix of the wavelet coefficients.  The 
authors believe that the excellent time-frequency 
resolution of the Morlet will provide a good 
representation of human speech.  The abstract nature 
information obtained in the wavelet transform domain is 
overcome by using covariance analysis on the wavelet 
coefficients to determine the best representation of 
speaker characteristics.  In this preliminary study, it is 
demonstrated that the proposed method can be used for 
efficient reconstruction using either a full set or a 
significantly reduced set of coefficients.   

 
Figure 1: Proposed speech-processing system 

 
2. Selection of wavelet and filter bank: 
Many speech-processing techniques have tried to mimic 
the auditory filter bank through the use of cepstral filters 
[4]. These techniques are often solely based on the 
spectrum of a signal, unlike human hearing which also 
utilises temporal information [7]. Wavelet-based 
analysis provides better localisation in both time and 
frequency domains.  In speech processing, this is 
essential for tracking vowels and consonants. The Morlet 
wavelet provides best time and frequency localisation. 
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To design of wavelet filter bank, the main considerations 
are the bandwidth (of individual wavelet filters) and the 
number of wavelet filters per octave.  In this paper, the 
signal is sampled at 20kHz.  The speech spectrum 
considered is the frequency range 100Hz – 8kHz. To 
provide separation of formant frequencies, each filter in 
the filter bank has a Q of approximately 6.  The table 
below shows how the spectrum was split into octaves. 
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Octave Starting 
frequency 

Ending 
frequency 

1 62.5 Hz 125 Hz 
2 125 Hz 250 Hz 
3 250 Hz 500 Hz 
4 500 Hz 1 kHz 
5 1 kHz 2 kHz 
6 2 kHz 4 kHz 
7 4 kHz 8 kHz 

Table 1: Frequency range of filter bank 
 
Additionally, in order to get a reasonably flat 
response across the spectrum, the filters were 
designed to to overlap at 3dB points.  The wavelet 
filter bank can be then described by the filter 
coefficients  

ββββ =[β1, β2,.. βN] 
in which β1 =1, βN <2 and the coefficient βi 
corresponds to the filter 
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Experiments on the response of individual filters 
indicate that 4 filters per bank is a good choice.  A 
discussion of the derivation of the filter coefficient 
values is given in an appendix.  The β values used are 
[1.07 1.37 1.65 1.94].  Figures 2 and 3 show the 
frequency response of the filters in the octave 
between 250Hz – 500 Hz 
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Figure 2: Frequency response of 4 wavelet filters  
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Figure 3:.  Band pass filter250Hz- 500Hz ripple 
 
3. Continuous wavelet transform: 
The continuous wavelet transform is  
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The wavelet function )(tψ  used is the Morlet wavelet.  
The discrete version of the wavelet transform can be 
written as 
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and α= 0.004 is the scale factor to fit the Morlet wavelet 
to the  time frame used. 
Direct implementation of (2) and (3) requires a large 
number of computations.  If (2) is viewed as the 
response of a signal to a linear system, i.e. a simple 
convolution, computationally it is advantageous to 
calculate (2) in the frequency domain [1, 5].  In addition, 
if the term (k-n) in (2) is considered as the frequency 
term in the FFT, the wavelet transform for an entire 
octave can be evaluated as the inverse Fourier transform 
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where the scaled wavelet for a particular octave is 
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Even though the Morlet wavelet bases are not 
orthogonal, the reconstruction can be evaluated from the 
following formula [5] 
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where δC is a constant (0.776) for Morlet wavelet and δj 
will be evaluated from experiments [5].  To some extent, 
δj is the compensation factor because the continuous 
wavelets are not orthogonal. 
An algorithm similar to [5] is proposed for fast 
implementation of the wavelet transform. The algorithm 
is to be hardware implementable: 
 
1. Design the fundamental wavelet bases to cover the 

lowest frequency range 
2. FFT the sampled signal on a 1024 sample frame 

basis  
3. At each scale and for each sub-band, decimate the 

fundamental wavelet, padding zeros to have equal 
number of points as the signal and FFT the baby 
wavelets 



 
 

4. Using linear vector space algorithm, process the 
time frequency information. 

5. Inverse FFT the processed result backs to time 
domain to obtain the approximate signal of a 
speaker. 

 
Figure 3 depicts the system response for a short 
speech sample by a male speaker. The maximum 
magnitude of the error is within 5% of the peak 
magnitude of the original signal. 

 
Figure 3: Word “one” by a male speaker and the 

reconstructed signal  
with full set of wavelet coefficients 

 
4. Best vector basis and speaker 
recognition: 
Mathematically, the wavelet coefficients associated 
with the frequency response and localized in time can 
be viewed as a vector in linear vector space:  
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This vector may be thought of as a time-sequence 
itself that varies in magnitude and direction in the 
linear vector space according to the time-varying 
characteristics of the processed speech.  If the vector 
is randomly distributed, such as would be obtained if 
Gaussian noise were substituted for the speech signal, 
the vector will span the all directions with equal 
probability. The authors hypothesise that the 
characteristic sounds made by individual speakers 
will lead to a unique subspace structure in the time-
varying response of the wavelet filter coefficients 
averaged over time.  The structure may be the result 
of a number of physical attributes of the speaker, such 
as structure of the vocal tract, etc. To use this 
structure to design a speech recognition algorithm it 
is sufficient to characterise the subspace associated 
with a specific speaker or class of speakers.  To 
illustrate, suppose that ΩP ={ωjP} and ΩQ ={ωjQ} 
denote the subspaces in the linear vector space 
associated with the average male and female pitch 
tones. If a signal is processed and it is found that the 
average wavelet filter coefficients lie consistently in 

ΩQ and are significantly disparate from ΩP then the 
speaker is more likely to be female than male. 
If a vector time-sequence has a structure that carries 
sufficient information to be identified and extracted, it 
should be possible to identify the subspace associated 
with this structure by studying the covariance of this 
signal. Suppose this subspace has dimension P where  
(0<P<K), then the subspace is represented by a sequence 
of P vectors that span the subspace directions 
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This is the best basis that can optimally represent a given 
speaker. It is expected that for our speaker recognition, 
(1) the P value will be small and (2) different speakers 
will have different sets of code-vector basis. Of course, 
the number of speakers that can be differentiated 
depends upon the total number of subspaces in the linear 
vector space and the number of subspaces needed to 
represent each speaker.  
To find out the structure or the best basis, Eigenvalue 
decomposition (EVD) is used on the covariance matrix 
[1, 6]. The covariance matrix Q is essentially the matrix 
that describes the correlation between the subspaces of a 
given vector. 
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The structure of a vector will develop for a statistical 
averaging of the covariance matrix 
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The covariance matrix can be decomposed in to the 
diagonal and the Eigen vector matrices 
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If the structure in the Q matrix is represented by a small 
number of subspaces, the diagonal matrix should have a 
small number of significant Eigenvalues and the rest are 
insignificant 
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The best basis will be the Eigen vectors that are 
associated with the P significant Eigenvalues {λ1, λ2,..., 
λP) 
Suppose the best basis is VP = {v1, v2,...vP}, the 
“rectified” speech vector is the projection of the original 
vector on the subspace of the best basis 
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An algorithm to approximate a signal by best vector 
subspaces can be described as follow: 
1. Process the signal and map the signal to a time-

frequency vector. 
2. Normalise the vector 
3. Calculate the covariance matrix Q 
4. Average the covariance matrix Q over J times (J 

should be large enough to ensure the structure 
develops). 

5. EVD the average Q matrix 
6. Pick out the best P vector basis corresponding to 

the P largest Eigenvalues 
7. Project the speech vector onto the best basis 

subspace 
8. Using inverse wavelet transform to bring back to 

time domain to obtain the “rectified“ signal. 
We describe here our first successful attempt to filter 
a real speech signal using best vector basis approach. 
In this experiment, a structure between the audio 
bands of a speech signal is to be examined. It defines 
which sub-bands over seven octaves are significant in 
representing the unique characteristics of each 
speaker. The experiment aims at the possibility of 
representing a speaker with a smaller number of 
linear vector subspaces than the full set of 28 as in 
our design.   
Figure 4 shows the graphical representation of the 
diagonal matrix and the Eigen vector matrix. The 
diagonal matrix suggests that there are a small 
number of significant Eigen values. Figure 5 depicts 
the signal as reconstructed from the best 10 linear 
vector subspaces, hence it appears possible to 
represent speech with the reduced subspace. 
 

 
Figure  4. The diagonal matrix (left),  

Eigen vector matrix (middle) and best vector basis matrix 
(right) 

 

 
Figure 5. The signals original (top) and as rectified from 

best 10 (middle) and full subspace (bottom) 
 
Another series of tests have also been conducted. In 
most cases, as far as speech intelligibility is concerned, 
the representation of speech by the best basis approach 
provides good intelligibility. The longer the samples 
over which the average statistical Q matrix is measured, 
the better the representation. 
Based on this success, it appears theoretically and 
practically possible to improve speaker recognition. The 
critical point in future extensions of the work is the 
definition and estimation of structure necessary to set up 
a proper framework for vector subspace analysis.  The 
next stage is to develop the covariance matrix algorithm 
for short-term mapping of target speakers. It is envisaged 
that in doing this, an algorithm for filtering overlapping 
speakers could be developed.  Such analysis would 
require careful and detailed work and is beyond the 
scope of this paper.  
 
5. Conclusion: 
A novel approach for speech characterization and 
reconstruction using wavelets and linear algebra was 
described. The design of wavelet filters and the wavelet 
transform have been proven efficient and sufficient. The 
authors believe that the algorithm described in this paper 
could be adapted in the future to be the front end of a 
speaker recognition system. Even though real time 
requirements are not strictly imposed in this 
development, the proposed approach is promising. 
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Appendix Calculation of filter 
coefficients 

 
The Q factor is defined as the ratio of frequency and 
the bandwidth associated with that frequency 

BW
fQ =  (1) 

Assume we are designing two filters centred at f1 and 
f2 with bandwidth BW1 and BW2.  Then in order to 
have f1 and f2 intersect at the 3dB point, we would 
require 
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(assume that f2 >f1) 
In addition, we would like to have these two filters 
have constant Q 
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Hence, from (1) (2) and (3) 









−
+=

















−

+
=

12
12

2
11

2
11

112 Q
Qf

Q

Qff  

Now if we want to design a bank of four filters of four 
filters at f1, f2, f3, f4  such that the lower 3dB of f1 is at 
fstart-band , the high 3dB of f4 is at 2*fstart-band or fend-band 
and they intersect each other at 3dB points, then 
 

f3=af2 =a2f1 
 

f4=af3=a2f2=a3f1 
where 
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is a function of Q 
Hence 
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The start band frequency and the end-of-band frequency 
are found from 
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From the relation between BW, Q and f as derived above 
and given that  
 

2fstart-band=fend-band 
We have 
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Then from the result for f4 above 
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This equation yields 
Q ≈ 5.7852 
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In terms of the start-band frequency 
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Therefore, the theoretical array of coefficients of filters 
is  
 

[1.095  1.3017  1.5480 1.8409] 
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