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Abstract. New, efficient, 8-D rotation CORDIC-
like algorithms for matrix computations are 
presented. These algorithms are a natural extension 
to 8 dimensions of Quaternion CORDIC 
algorithms, offered by J.M. Delosme and S.F. 
Hsiao. This leads to significantly reduced 
computations in contrast to 8-D Householder 
CORDIC algorithms given by the same authors. 
Such algorithms may be utilized for designing 
VLSI array processors or configurable FPGA-s for 
linear systems, the eigenvalues, singular values, 
least squares and other linear algebra problems in 
DSP. 
  
Index Terms- CORDIC, computer arithmetic, 
multi-dimensional rotations, matrix computations, 
VLSI. 
  
1.        Introduction 
 
The very fast growth of modern VLSI complexity 
offers a hardware realization of an ever-growing 
share of mathematical means. It essentially raises 
the computer performance. However, known 
multidimensional algorithms for signal processing 
are not hardware-oriented. The exceptions are the 
famous CORDIC-algorithms [1] and some FFT-
algorithms [2]. New algorithms are needed to 
satisfy VLSI-technology requirements.  Main 
requirements are the following: 
- algorithms must have a guaranteed accuracy and 
convergence after a fixed number of steps; 
- every step of the algorithm must have a limited set 
of simple operations with the same realization time; 
- algorithms must have the possibility of 
decomposition on equal parts with a limited set of 
types; 
- algorithms must realize the highest possible 
typical computing procedures which are frequently 
found in signal processing methods. 
For ensuring the previous requirements it is 
necessary to pick out a set of large operations 
(macro-operations) for programming of linear 
algebra problems and to design special algorithms 
for fast implementation. It offers the realization of a 
computation process by a configurable FPGA, for 
example, using one or several VLSI-chips. 
 
 

 
2.        Discrete Linear Transforms  
 
The analysis of mathematical content of signal 
processing shows the main problems are linear 
systems. They are system of equations, eigenvalues, 
singular values, least squares, and other problems. 
The typical matrix operation for their solutions is 
an one-sided linear transformation: 
           
                                    Y=PX.                             (1)                              
Sometimes it�s possible to perform the factorization 
of matrix P by simple matrices: 

                  P=∏∞

=0i iP .       (2)

                            
Hence, the one-side transformation (1) may be 
realized by an iteration process: 
 
                               Yi+1 = PiYi,        (3)
            
where i = 0, 1, 2, �, n; Y0 = X. The result is Yn → 
PX, if n → ∞.  
This process is a discrete linear transform (DLT). 
When elements of matrices Pi are ones, zeros or 
twos with integer power this process can be very 
fast implemented by hardware. For example, 
Givens rotation is realized by the well-known 
hardware-oriented CORDIC-algorithms for two-
dimensional plane rotation.  
The transformation matrix is 
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representation. The transformation (1) converts a 

vector X to ( )XRY i∏ =
= n

i
k

0
, and the algorithm 

for its implementation is: 
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It involves only simple operations of addition and 
shift thus differing by a simplicity and high speed 
in hardware implementation. They are suitable for 
fast software realization by RISC-processors also. 
The VLSI-realization of the CORDIC-processor is 
often utilized for DSP [2]. The dimensionality of 
CORDIC-algorithms is equal to two. This is a main 
disadvantage. The long sequence of these macro-
operations is required for problem solving. 
 
3.        Octonion DLT-s 
 
The widespread way for solving linear algebra 
problems is zeroing entries in a vector or a matrix 
by sequence of rotations or reflections. For 
CORDIC algorithm (4) ξi=-sign(yi) is taken to zero 
element x2 of 2-D vector X. It seems reasonable to 
speed up matrix computations by expressing them 
in terms of higher dimensional rotations. 
Householder reflections are exceedingly useful for 
introducing zeros on a grand scale, e.g. the 
annihilation of all but the first component of a 
vector. There are two outstanding multidimensional 
CORDIC-like algorithms suggested by J.M. 
Delosme and S.F. Hsiao for VLSI-implementation 
of these transformations. To generalize the original 
CORDIC algorithms they offered the Quaternion or 
Pseudo-quaternion CORDIC algorithms (QCA) [3], 
[8] for 4-D rotations: 
 
             Yi+1 = R4,i Yi ,  (0 ≤ i ≤ n; Y0=X),  
        
where the elementary rotation matrix is 
 
                           1        αiti          βiti     γiti 

             R4,i   =      - αiti        1      - γiti    βiti 
                        - βiti       γiti       1    - αiti 
                        - γiti     - βiti      αiti      1 
 
The rotation parameters ti are equal to 2-f(i) with 
{f(i)} a non-decreasing positive integer sequence 
and the control signs αi÷ρi are either 1 or �1. To 
bring real 4-D vector X along the first canonical 
axis control signs are selected according to 
 
           αi = fi⋅sign(y2,i);         βi = fi⋅sign(y3,i); 

            γi = fk⋅sign(y4,i);         fi = sign(y1,i). 
 
For m dimensions they presented the Householder 
CORDIC algorithms (HCA), which have the limits 
for practical values of m �to less than 10 or so� [4] 
because the complexity in terms of area and 
computation time grows slightly faster than 
linearly. From the practical point of view m=8 may 
be taken. In this case it�s possible to design 8-D 
CORDIC-like algorithms those are simpler than 
HCA and are suitable for solving the same linear 
algebra problems. 
Just as a complex number can be written as an 
ordered pair of real numbers, a quaternion can also 
be written as an ordered pair of complex numbers. 
Following this approach one is then naturally led to 
consider ordered pairs of quaternions � these new 
objects being called  Cayley numbers or octaves or 
octonions (8-dimensional objects) [5]. In a way 
similar to QCA in Euclidean case new algorithm is 
called 8-D Octonion CORDIC algorithm since its 
elementary rotation matrices 

 
                   1    αiti     βiti     γiti   δiti    λiti    µiti    ρiti  
                -αiti      1    -δiti   -ρiti     βiti   -µiti    λiti   γiti 

                          -βiti   δiti    1     -λiti   -αiti      γiti   -ρiti    µiti   
 R8,i =     -γiti   ρiti   λiti       1     -µiti  -βiti      δiti  -αiti                               

    -δiti  -βiti   αiti    µiti        1       -ρiti    -γiti    λiti    
   -λiti    µiti     -γiti   βiti    ρiti       1      -αiti   -δiti   
   - µiti   -λiti      ρiti  -δiti   γiti     αiti      1        -βiti    

    -ρiti    -γiti    -µiti   αiti  -λiti     δiti     βiti        1     

                                 (5) 
 
are real matrix representations of particular  

ki-length octonions ( ki=
271 it+ ). The rotation 

parameters ti are equal to 2-f(i) with {f(i)} a non-
decreasing positive integer sequence and the 
control signs αi÷ρi are either 1 or �1. Without 
performing the scaling by ki

-1 the implementation of 
one elementary rotation consist of eight concurrent 
shift-and-add operations. The known means may be 
used for decomposition of overall scaling factor                                 

k = 2/1
1

2 )71( −
=∏ +n

i it  into several simple factors 

such that the multiplication of 8-D real vector by 
each of those factors is also implemented by eight 
concurrent shift-and-add operations, e.g. [4]. For 
fixed bit accuracy, the total number of iterations, 
including unscaled and scaled iterations, in one 8-D 
octonion CORDIC operation is about the same as 
that in 2-D CORDIC operation. For example, for 
32-bits accuracy only three additional iterations are 
needed for algorithm convergence and five � for 
scaling multiplication. 
The Octonion CORDIC algorithm 
                   
             Yi+1 = R8,i Yi ,  (0 ≤ i ≤ n; Y0=X),        (6) 
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as well as original CORDIC algorithm, can be used 
in two modes - rotation (application of 
transformation) and vectoring (evaluation of a 
parameter of transformation). Usual task of 
vectoring in such algorithms is annihilation of 
required components in a vector given. As after 
plane Volder�s rotation one of two components is 
zero, in 8-D space seven components may be zeros. 
A sequence of elementary rotations with matrices 
(5) is applied to a 8-D vector  
X= [x1, x2, x3, x4, x5, x6, x7, x8]T to bring it along the 
first canonical axis. To achieve this, the control 
signs are selected for (6) according to 
 
          αi = fi⋅sign(y2,i);         βi = fi⋅sign(y3,i); 
          γi = fk⋅sign(y4,i);          δi = fi⋅sign(y5,i);   
          λi = fi⋅sign(y6,i);         µi = fk⋅sign(y7,i);        (7) 
         ρi = fi⋅sign(y8,i);         (0 ≤ i ≤ n; Y0=X), 
 
where  fi = sign(y1,i); yj,i  denotes the j-th 
component of vector Yi at the beginning of the 
(i+1)-th iteration. In rotation mode, the 
predetermined control signs are used to rotate a 8-D 
vector. They can be obtained from a preliminary 
vectoring operation in-fly.  
The hardware implementation of Octonion 
CORDIC algorithm is similarly to quaternion 
CORDIC-processor [3]. The major components are 
8 shifters that perform right-shift by i bit positions, 
8 carry-save-adders that transform 8 operands into 
2, 8 adders and 8 storage registers.  The proposed 
processor can calculate an 8-D rotation in roughly 
the same time as standard 2-D CORDIC-processor 
calculates plane rotation because the latency 
distinction is one carry-save-addition only. In 
contrast to 8-D Householder CORDIC processor 
the shifters for multiplications by ti

2 are not 
necessary thus significantly reducing the hardware 
cost. 
 
4.       Computational Structures 
for Matrix Triangularization 
 
A DLT with matrix P= k-1∏ =

n

0i i8R ,  is 

orthogonal transformation. Therefore it can be used 
to implement a lot of important matrix methods. 
For example, to triangularize a given 8x8 matrix A 
we can use the Octonion CORDIC algorithm: 
 
            A(i+1) = R8,i A(i),  (0 ≤ i ≤ n; A(0)=A)   (8)                       
 
 If control signs are determined by (7) for vector Yi 
= A1

(i)= [a11
(i), a21

(i), a31
(i), a41

(i), a51
(i), a61

(i), a71
(i), 

a81
(i)]T,  the result of this transformation is: 

 
 
 
 
 

                        a�
11  a�

12 � a�
18 

                        0     a�
22 � a�

28 
          A(n) =             �                             (9)                                    
                        0     a�

82 � a�
88                                                                

 
The computational process can be organized like 
Householder method. After 7 steps of similar 
transformations for vectors X= Aj = [ajj, aj+1,j,�,a8j] 
(j=1,�,7) the overtriangular matrix will be 
received. The missed (j-1) components for vectors 
X are equal to zero. 
For pipeline processing  n sets of  8 units are 
required to compute matrix (9) at all steps 
(i=0,1,2,�,n) .Units connection is shown in Figure. 
Every unit Ur

(i) (r=1,2,�,8) performs one iteration 
of algorithms (6) and (7). It has inputs cr for 
operands of operations (7) and inputs ar for 
operations (6). A hardware for scaled  iterations is 
not shown. The macropipeline with 7 such sets may 
be utilized for the computation of an overtriangular 
matrix. Units number for j-th set (stage of 
macropipeline) is less by (j-1) units. 
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Fig. Connection of units for i-th iteration of (8). 
 
So, a throughput of one matrix triangularization per 
clock period may be achieved using described 
�doubly piped�[2] Octonion CORDIC modules. For 
arbitrary size matrix N×N (N>8) we can use 
partitioned matrix algorithms [2]. 
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5.         Conclusions 
 
New CORDIC-like algorithms were offered for 
multi-dimensional  rotations.  These results 
significantly reduce the computation time of 
important matrix algorithms and significantly 
reduce the hardware cost. Moreover, suggested 
technology may be used for designing new 
CORDIC-like algorithms [7].  
It�s necessary to mention that all improvements 
over the basic CORDIC algorithm (scaling 
iterations, redundant arithmetic, high-radix 
arithmetic, etc.) [6] may be incorporated in the 
offered algorithms also. 
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