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Abstract 

 
In the present paper, we develop a new efficient 
approach to detection of abrupt changes in a 
sequence of recognized digital images, which can 
be applied to a wide variety of practical problems 
of digital image processing. The principal idea of 
this approach consists in transforming an original 
sample of the observed data to a set of one-
dimensional statistics and measuring a distance 
from homogeneity. Essentially, there are two 
problems associated with change point detection: 
detecting the change and making inferences about 
the change point. For solving these problems, a 
non-parametric technique is proposed. The test for 
testing the null hypothesis of “no change” against 
the alternative of “change” is based on a version of 
the Waerden statistic. Estimating the change point 
is based on a version of the Mann-Whitney 
statistic. The suggested approach represents a sort 
of  “retrospective” approach when (at each stage) 
one looks at a fixed sample of the statistical data 
and attempts to determine whether and where a 
change has occurred in this fixed sample of the 
foregoing data. The main advantage of the 
proposed approach lies in its relative simplicity 
and the ease with which it can be applied. 
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1. Introduction 
 
In many practical problems concerned with digital 
image processing one is faced with the task of 
deciding if the variability within a sequence of 
digital images is uniform, or if not, which 
segments of a sequence exhibit the uniform 
variability. This type of problems arises, when the 
data relate to several processes, to the same 
process at different times, or to the same processes 
from different sources. Its applications appear in 

many fields such as computer vision systems, 
quality control, reliability theory, seismology, 
speech processing, automatic analysis of 
biomedical signals, econometric modelling, 
ecological modelling, remote sensing, regression 
analysis and tracking problems. 
 
 
 
2. Data Model 
 
Consider a digital image representing a set of p 
picture elements (pixels) in some object. Let s=(s1, 
... ,sp)′ be the signal associated with this image, 
where si is a gray-level value at the ith pixel, i∈ {1, 
... ,p}. It is assumed that the image is distorted by 
a noise process. The problem of detecting the 
unknown deterministic signal s in the presence of 
a noise process, which is incompletely specified, 
can be viewed as a binary hypothesis testing 
problem. The decision is based on a sample of 
observation vectors xi = (xi1, ... ,xip)′, i = 1(1)n, 
each of which is composed of noise wi = (wi1, ... 
,wip)′ under the hypothesis H0 and a signal s = (s1, 
... ,sp)′ added to noise wi under the alternative H1, 
where n > p. The two hypotheses which the 
adaptive detector must distinguish are given by 
 
 
 

H0: X = W                    (noise alone), 
(1) 

 
 

H1: X = W + cs′′′′         (signal present), 
(2) 

 
 
where 
 
 

X = (x1, ... ,xn)′, 
(3) 
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W = (w1, ... ,wn)′, 
 

(4) 
 
 
 
are n × p random matrices, and 
 
 
 

c = (1, ... ,1)′ 
(5) 

 
 
 
is a column vector of  n units. It is assumed that 
wi, i = 1(1)n, are independent and normally 
distributed with zero-means and common 
unknown covariance matrix (positive definite) Q, 
i.e. 
 
 
 

wi ∼  Np(0,Q),       ∀ i = 1(1)n. 
(6) 

 
 
 
 
Thus, for fixed n, the problem is to construct a test 
which consists of testing the null hypothesis 
 
 
 

H0: xi ∼  Np(0,Q),       ∀ i = 1(1)n, 
 

(7) 
 
 
versus the alternative 
 
 
 

H1: xi ∼  Np(s,Q),       ∀ i = 1(1)n, 
 

(8) 
 

 
where the parameters s and Q are unknown. One 
of the possible statistics for testing H0 versus H1 is 
given by the generalized maximum likelihood 
ratio (GMLR) 
 
 
 
 

),;(L max);(L max =LR
01

1
H

0
H θθ

Θ∈θΘ∈θ
XX  

 
(9) 

where θ=(s,Q), Θ0 = {(s,Q): s=0, Q∈ Mp}, Θ1 = Θ 
−Θ0, Θ = {(s,Q): s∈ Rp, Q∈ Mp}, Mp denotes the set 
of p × p positive definite matrices. Under H0, the 
joint likelihood for X based on (7) is 
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Under H1, the joint likelihood for X based on (8) is 
 
 
 

n/2np/2
H )( = );(L
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(11) 
 
 
 
It can be shown that 
 
 
 

,ˆˆ = LR
n/2

1
n/2

0
−

QQ  

(12) 
 
 
 
where 
 
 
 

/n, = ˆ
0 XXQ ′  

(13) 
 

 
 
 

n,ˆˆ( = ˆ
1 /)cs-X)(cs-XQ ′′′′′  

 
(14) 
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and 
 
 
 

n/= ˆ cX s ′  
(15) 

 
 
 
are the well-known maximum likelihood 
estimators of the unknown parameters Q and s 
under the hypotheses H0 and H1, respectively. It 
can be shown, after some algebra, that (12) is 
equivalent finally to the statistic 
 
 
 

n,/ = v 1
1

21 TTT −′  
(16) 

 
 
where T1 = X′c,  T2 = X′X. It is known that 
(T1,T2) is a complete sufficient statistic for the 
parameter θ = (s,Q). Thus, the problem has been 
reduced to consideration of the sufficient statistic 
(T1,T2). It can be shown that under H0, the result 
(16) is a Q-free statistic, which has the property 
that its distribution does not depend on the actual 
covariance matrix Q. This is given by the 
following theorem. 
 
Theorem  1.  Under H1, the statistic v is subject 
to a noncentral beta-distribution with the 
probability density function 
 
 
 

1
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0 < v < 1, 
 

(17) 
 
 
 
where 1F1(a;b;x) is the confluent hypergeometric 
function, q = n(s′Q−1s) is a noncentrality 
parameter representing the generalized signal-to-
noise ratio (GSNR). Under H0, when q=0, (17) 

reduces to a standard beta-function density of the 
form 
 
 
 

1

H 2
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0 < v < 1. 
 

(18) 
 

 
 
Proof. This is given by Nechval (1992, 1997) 
and so it is omitted here.  . 
 
The GMLR test of H0 versus H1, based on v, is 
given by 
 
 
 

. 
H      then h,<
H      then h,

 v
0

1





≥

 

 
(19) 

 
 
 

For fixed n, in terms of the probability density 
function (18), tables of the central beta-
distribution permit one to choose a threshold h of 
the test in order to achieve the desired test size 
(false alarm probability PFA). Furthermore, once h 
is chosen, tables of the noncentral beta-
distribution permit one to evaluate, in terms of the 
probability density function (17), the power 
(detection probability PD) of the test. The 
following theorem shows that the test (19) is 
uniformly most powerful invariant for a natural 
group of transformations on the space of 
observations. 
 
Theorem  2.  For testing the hypothesis H0  (7) 
versus the alternative H1  (8), the test given by 
(19) is uniformly most powerful invariant (UMPI). 
 
Proof.  The proof is similar to that of Nechval 
(1997) and so it is omitted here.  . 
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3. Problem Statement 
 
Consider, under H1, a sequence of random 
variables v1, v2, ... ,vT ordered in time, then the 
sequence is said to have a change point at τ if vt 
for t=1, ... ,τ have a common distribution function 

)qn,v;(F 1H1  and  vt  for t=τ+1, ... ,T have a 
common distribution function  ),qn,v;(F 2H1

 

where q1 ≠ q2. The parameters q1 and q2 are 
unknown. We consider the problem of testing the 
null hypothesis of  “no-change”, CH0: τ=T, against 
the alternative of  “change”,  CH1: 1≤τ<T, using  
non-parametric statistics. 
 
 In formal terms, the change point problem, 
considered in this paper, is to decide (at each stage 
T) between the two hypotheses: 
 
  
 
 

1(1)T,       t,)qn,v;(F ~ v:H 1Ht0
C

1 =  
 
 

(20) 
 
 
 
and 
 
 
 

,1(1)       t,)qn,v;(F ~ v:H 1Ht1
C

1 τ=  
 
 
 

                         ~ ),qn,v;(F 2H1
     t = τ + 1(1)T, 

 
 

(21) 
 

 
 
with the prescribed false alarm probability α. 
Thus, the problem is to determine whether or not a 
change point exists in a sequence of random 
variables vt, t=1(1)T. In other words, we consider 
the problem of testing the null hypothesis of “no-
change”, CH0: τ=T, against the alternative of 
“change”, CH1: 1≤τ<T, using a non-parametric 
statistic. If the hypothesis CH1 is accepted, a 
stopping rule S is determined by S =T. The 
proposed test procedure prescribes stopping as 
soon as the non-parametric test statistic for 
detection of a change having occurred exceeds a 
threshold corresponding to the significance level 
α. 

4. Estimating the Point        
          of a Probable Change 
 
Let us now examine the Mann-Whitney statistic 
for testing if two samples (v1, v2, ... ,vt and vt+1, ... 
,vT) come from the same population. The statistic 
Ut,T is defined as 
 
 
 

,D = U
T

1+tj=
ij

t

1=i
Tt, ∑∑  

(22) 
 
 
 
where Dij=sgn(vi-vj), sgn(x)=1 if x>0, 0 if x=0, −1 
if x<0. To use the above statistic to solve the 
change point problem, we let t vary such that 
1≤t<T. Then we introduce the following statistics: 
 
 
 

,U max = G Tt,T<t1T
≤

 

(23) 
 
 
 

, Umax = G Tt,T<t1

+
T

≤
 

(24) 
 
 
 

. Umin = G Tt,T<t1T ≤

− −  

(25) 
 
 
 
We refer to −

T
+
TT G  and ,G ,G  as the change point 

statistics. It is easy to see that 
 
 
 

. G ,Gmax  = G T
+
TT 





 −  

 
(26) 

 
 
An estimation of a probable change point in a 
sequence of observations is based on this statistic. 
Unfortunately, a probability distribution of GT is 
unknown. Therefore, for testing the null 
hypothesis CH0 against the alternative CH1 we use 
the Waerden statistic (Waerden, 1953). 
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The above statistic Ut,T is used for estimating the 
point of a probable change. We let t vary such that 
1≤t<T. The formula (22) can be computationally 
expensive. It is desirable to use a method that is 
computationally feasible. We present an 
alternative to equation (22). Note that 
 
 
 

. +  = 
T

1+t=j
tj

T

1tj
ij

1t

1i
Tt, DDU ∑∑∑

+=

−

=

 

 
(27) 

 
 
 
Now 
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1t

1=i
it

T
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1i

T

1tj
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1t

1i
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−

=

−

=+=

−
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(28) 

 
 
 
Substituting (28) into (27), we have 
 
 
 

.  
T

1+t=j
tj

1t

1=i
it

T

tj
ij

1t

1i
Tt, D+DD=U       ∑∑−∑∑

−

=

−

=

 

 
(29) 

 
 
 
If we observe that 
 
 
 

, = 
T

tj=
ij

1-t

1=i
T1,-t DU ∑∑  

(30) 
 
 
 
Dtt=0 by definition, 
 
 

∑∑
−

=

−

=

=−
1t

1i
ti

1t

1i
it D  D  

 
(31) 

by symmetry of the sgn function, we arrive at our 
final recursion formula 
 
 
 

∑
T

1=i
tiT1,-tT,t . +  = DUU  

(32) 
 
 
 
Then an estimate of the point of a probable change 
is given by 
 
 
 

.U max  arg = *t Tt,T<t1≤
 

(33) 
 

 
 
 
5. Test Statistic for 
 Recognition of a Change 
 
Let v1, … ,vt* and vt*+1, … ,vT be independent 
observed variables. Suppose r1, … ,rt* are the 
ranks of the t* observations v1, … ,vt* in the 
complete sample of T observations. Let Φ be the 
(cumulative) distribution function of the standard 
normal distribution and Ψ=Φ-1 the inverse 
function. Put 
  
 
 

T., ... 1,r   ,
1T

rb r =







+
Ψ=  

 
(34) 

 
 
 
The hypothesis CH0 to be tested is: the v’s from v1, 
… ,vt* have the same distribution as the v’s from 
vt*+1, … ,vT. The test statistic is 
 
 
 

∑
=

=
*t

1i
r .bZ
i

 

(35) 
 
 
 
If Z exceeds a limit zα depending on the level α, 
the hypothesis CH0 is rejected. The two-sided test 
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on the level 2α rejects when the absolute value 
Z exceeds the same limit zα. 

 
Put b1=−b and bT=+b. Then the probability 
distribution function F(z) of the statistic Z, that is, 
the probability of Z < z, is given approximately by 
 
 
 

)z(F  
 
 

,bzbzz2)4/1( 















σ
+Φ+








σ
−Φ+








σ
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(36) 
 
 

where 
 
 

.b
)3n)(2n(

1)1*t(
2/11T
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−
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(37) 

 
 

 
The null hypothesis of no change is rejected if the 
absolute value Z  exceeds a limit depending on 
the level α, and we declare that τ=t* (see (33)). In 
other words, 
 
 
 







α≥

α<
α

(change),H         then ,

change), (no H         then ,
 

      1
C

Z

    0
C

Z  

 
(38) 

 
 
 

where α is a specified significance level, 
 
 
 

).Z(F)Z(F1Z −+−=α  
 

(39) 
 
 
Under the hypothesis CH1, the maximum 
likelihood estimates of the unknown parameters 
q1and q2 can be found as 

∏
τ

=

=
1t

tH
q

1 q)n,;(vf max argq
1

)  

 
(40) 

 
 
and 
 
 

∏
+τ=

=
T

1t
tH

q
2 q).n,;(vf max argq

1

)  

 
(41) 

 
 
 
 
6. Conclusion 
 
The results of computer simulation confirm the 
validity of the theoretical predictions of 
performance of the suggested test. 
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