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1. Introduction 
 
Lauer [1] introduced Partial Unit Memory (PUM) 
codes in 1979. PUM codes, which can be described 
as multiple-input convolutional codes, are optimal in 
the sense of having maximum free distance for a 
given code rate, number of encoder inputs and 
number of encoder memory cells..  Their advantage 
over standard convolutional codes is the reduced 
number of states in their trellis for the same number 
of encoder inputs because only a fraction of these 
are shifted to the memory cells. On the other hand, 
PUM codes can attain larger free distances than 
block codes of the same codeword size and rate. 
Moreover, the block structure of the code facilitates 
synchronization.  Another advantage of PUM codes 
is that their block length is such that they can be 
chosen to agree with the byte or word length of the 
target microprocessor, allowing further 
simplification during implementation. A number of 
non-systematic generator matrices have been 
searched and published whose distance properties 
sometimes exceed equivalent convolutional codes of 
the same block size and memory complexity [1,2]. 
In recent years turbo codes have proved themselves 
when used in conjunction with iterative decoding 
schemes. However, to maintain a reasonably high 
throughput, turbo codes use systematic constituent 
codes and transmit the information bits only once 
together with a number of sets of parity bits. We 
have previously attempted to construct systematic 
PUM codes [3], but did not allow feedback in the 
encoder structure thereby limiting the free distance 
of the resulting code and hence their error correction 
ability when used together with maximum-
likelihood decoding. In this paper, we describe the 
construction of minimal recursive systematic PUM 
generator encoder structures from equivalent non-
systematic generator matrices, which generate 
codewords whose free distances reach or are very 
close to the upper bound defined in [1]. 
The paper is organised as follows. In section 2, we 
briefly describe PUM codes and their properties. In 
section 3, we show, by means of an example, how to 
construct equivalent systematic PUM generator 

matrices from known non-systematic generator 
matrices. The resulting encoder structure can 
sometimes be minimised to an equivalent structure 
with fewer delay elements. This minimalization 
procedure is described in section 4 by continuing the 
example from the previous section. In section 5, 
results from the simulation of a turbo code with two 
constituent recursive systematic PUM (RSPUM) 
codes in a Gaussian channel are illustrated. This 
turbo code is compared with an equivalent RSC 
turbo code. By equivalent, we mean that these 
component codes have the same free distance, 
constraint length and code rate.  
Simulation results indicate that the RSPUM turbo 
code outperforms the equivalent RSC turbo code. In 
general, the performance of RSPUM turbo codes is 
comparable or in many cases better than that of the 
equivalent classical RSC turbo code. 
 
2. PUM Codes 
 
A codeword, xt, of the (n, k, µ, dfree) PUM code is a 
function of the current input word of k information 
bits, ut and a fraction µ of the previous input word, 
ut-1. This can be expressed by the following 
equation: xt = utG0 + ut-1G1. 
G0 and G1 are generator matrices of size k×n, where 
n is the codeword length. The rank of the G1 matrix 
is µ, where µ < k. µ determines the state complexity 
of the state diagram and trellis of the code. The 
addition and multiplication operations are modulo-2 
for binary codes. The free distance, dfree is the 
minimum weight of a codeword that diverges from 
the all-zero path in the encoder standard trellis and 
returns to the all-zero path for the first time. 
G0 and G1 can be represented by one generator 
matrix of the form G(D) where the contents of the 
matrix are a function of the time delay. The latter 
representation will be used throughout the rest of 
this paper. 
A PUM code trellis can be represented by a standard 
trellis with 2µ starting and ending states and 2k 
branches leaving and entering each node, 
respectively. Since a PUM code is characterised by 
k>µ, there are 2k-µ parallel branches between any 
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two states in the trellis. Each branch is labelled with 
n symbols. For codes encoded by non-systematic 
generator matrices, the trellis labels will all be parity 
bits. In the case of systematic code structures, the 
trellis labels will each be made of k information bits 
and n-k parity bits. 
The generic max-log MAP decoding of systematic 
codes with multi-labelled trellis branches can be 
summarised by the following equations. 
The forward and backward recursion node metrics, 
α and β, at time t are a function of the branch 
transition probability Γ for all possible k inputs 
allowing transition from s’ to s. The log-likelihood Γ 
is the sum of the a priori likelihoods, L(u) for the k 
information bits and the likelihoods of the n 
channel-compensated received values Lcy. 
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The a posteriori LLR for each of the k symbols at 
time t is the sum of the a priori LLR, the LLR of the 
channel-compensated received value and the 
extrinsic LLR of the symbol in question. 
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3. Construction of RSPUM code 

structures 
 
If an encoding matrix has some k×k sub matrix 
whose determinant is a delay free polynomial, 
premultiplication by such a matrix yields an 
equivalent systematic encoding matrix [3]. 
Every convolutional matrix is equivalent to a 
systematic rational encoding matrix. If the 
determinant of the leftmost k×k sub matrix of G(D) 
is not a delay free polynomial, then we can always, 
by permuting the columns of G(D), find a generator 
matrix G'(D) whose leftmost k×k sub matrix has a 
determinant which is a delay free polynomial, where 
G'(D) encodes an equivalent code. Hence, without 
loss of generality we can write a systematic 
encoding matrix G(D)=(IkR(D)). 
As an example, consider the (4,2,1,4) PUM code 
with generator matrix G(D). 
 









+

=
DD

DG
101

1111
)(  

Let the T(D) be the leftmost 2×2 sub matrix of G(D), 
whose determinant is 1+D. 
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The equivalent systematic generator matrix Gsys(D) 
is given by: 
 
Gsys(D) = T(D)-1.G(D)  
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The controller canonical form of Gsys(D) contains 2 
storage registers as shown in Figure 1. 

u(1)

u(2)
c(1)

c(2)

c(3)

c(4)

 
Fig 1: Controller canonical form of Gsys(D). 
 
However, a minimal encoder with only 1 register 
can be realized. This minimalization process [4] is 
described below. 
 
4. Low complexity RSPUM 

encoder structure 
 
Let s(1)

t and s(2)
t be the states of the first and second 

delay elements at time t, u(1)
t and u(2)

t be the two 
inputs to the encoder at time t, c(3)

t and c(4)
t be the 

two parity bits calculated by the encoder at time t. 
The two systematic outputs can be ignored for this 
process, as they remain unchanged. 
The next states of the delay elements at time t+1 and 
the outputs of encoder at time t can be written as a 
function of the states and the inputs at time t. 
 

s(1)
t+1 = s(1)

t + u(1)
t 

c(3)
t = s(1)

t+1 + s(2)
t = s(1)

t + s(2)
t + u(1)

t 
s(2)

t+1 = s(2)
t + u(2)

t 
c(4)

t = s(1)
t + s(2)

t+1 = s(1)
t + s(2)

t + u(2)
t 

 
These equations are used to build Table 1. 
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Inputs u(1)
t u(2)

t Present State  
s(1)

t s(2)
t 00 01 10 11 

00 00/00 01/01 10/10 11/11 
01 01/11 00/10 11/01 10/00 
10 10/11 11/10 00/01 01/00 
11 11/00 10/01 01/10 00/11 

 
Table 1: Successor states and outputs (s(1)

t+1 
s(2)

t+1/c(3)
t c(4)

t) as a function of the present state    
(s(1)

t  s(2)
t) and the inputs (u(1)

t u(2)
t ). 

 
In order to find which states are equivalent, those 
states that correspond to the same outputs are 
merged into partition P1: {00,11}, {01,10}. 
The states in each set are 1-equivalent. The next 
stage is to determine whether this set can be further 
broken down into a partition P2 whose states are 2-
equivalent. Two states are 2-equivalent if they are 1-
equivalent and their successor states are 1-
equivalent. In this case, P2=P1. In general, 
partitioning is carried out till Pi+1=Pi. 
 
In order to obtain a linear realization of the minimal 
encoder, we let 0 represent the state {00,11} and 1 
represent {01,10}. This is shown in Table 2. 
 

Inputs u(1)
t u(2)

t Present State 
st 00 01 10 11 
0 0/00 1/01 1/10 0/11 
1 1/11 0/10 0/01 1/00 

 
Table 2: Successor state and output (st+1/c(3)

t c(4)
t) as 

a function of the present state (st) and the inputs  
(u(1)

t u(2)
t ) 

 
From Table 2, the successor state can be represented 
as a function of the present state and inputs as shown 
in Table 3. 
 

Inputs Present State 
00 01 10 11 

0 0 1 1 0 
1 1 0 0 1 

 
Table 3: Successor state as a function of the present 

state (st) and the input (u(1)
t u(2)

t ). 
 
Hence, st+1 = st + u(1)

t + u(2)
t. The same procedure is 

used to determine the parity bits as a function of the 
present state and k inputs. This yields for the first 
parity bit: c(3)

t = st + u(1)
t, and the second parity bit: 

c(4)
t = st + u(2)

t . Figure 2 illustrates the minimised 
encoder structure representing the new equations 
determined. 

u(1)

u(2)

c(1)

c(2)

c(3)

c(4)

 
Fig 2: Minimized realization of the systematic 

(4,2,1,4) PUM Code. 
 
The decoding trellis, including branch labels, of the 
above realization is shown in Figure 3. The labels are 
written in the order c(1)

t c(2)
t c(3)

t c(4)
t. The edge 

complexity is only 4 branches per information bit 
(bpi). 

0000

0101
1111

1100

1010

0011
0110 1001

0

1
 

Fig 3: Low complexity 2-state trellis 
 

 
5. Simulation and performance 
 
A parallel-concatenated code with two component 
(4,2,1,4) RSPUM codes is constructed to yield a rate 
1/3 turbo code. Figure 4 shows its performance in an 
AWGN channel for an interleaver size of 10000. 
The encoder structure of the equivalent recursive 
systematic convolutional code with constraint length 
2 is shown in Figure 5. Its trellis has 2 states and a 
branch complexity of 4 bpi. The code has a free 
distance of 4 over two information symbols. 
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Fig 4: Performance of (4,2) RSPUM turbo code for 

up to 8 iterations. 
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Fig 5: Equivalent RSC encoder structure. 

 
The relative performance of the rate 1/3 turbo 
decoders with two constituent RSC codes and 
RSPUM codes respectively is illustrated in Figure 6. 
Both turbo encoders use an interleaver size of 10000. 
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Fig 6: Relative performance of equivalent codes for 

4 iterations. 
 
Overall, the RSPUM turbo code outperforms the 
equivalent RSC turbo code by about 0.5 dB. 
 
6. Conclusion 
 
In this paper, the example of the simple (4,2,1,4) 
PUM code was used to demonstrate construction of 
the low complexity and maximum distance recursive 
systematic encoder structure. Hence recursive 
systematic PUM code structures can be efficiently 
constructed from known non-systematic generator 
matrices in order to retain their good distance 
properties. These encoder structures can be further 
minimised to yield encoder structures with fewer 
memory elements. The resulting code trellis has a 
very low decoding complexity and can be used 
effectively in turbo code systems. Simulation results 
showed that the performance of the (4,2,1,4) 
RSPUM as a constituent code in a rate 1/3 turbo code 
system outperforms the equivalent RSC turbo code.  
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