

PUM-BASED TURBO CODES
L Fagoonee*, Prof B Honary*, C Williams**

*Dept. of Communication Systems, Lancaster University, Lancaster, UK
**QinetiQ, Malvern, UK

1. Introduction

Lauer [1] introduced Partial Unit Memory (PUM)
codes in 1979. PUM codes, which can be described
as multiple-input convolutional codes, are optimal in
the sense of having maximum free distance for a
given code rate, number of encoder inputs and
number of encoder memory cells.. Their advantage
over standard convolutional codes is the reduced
number of states in their trellis for the same number
of encoder inputs because only a fraction of these
are shifted to the memory cells. On the other hand,
PUM codes can attain larger free distances than
block codes of the same codeword size and rate.
Moreover, the block structure of the code facilitates
synchronization. Another advantage of PUM codes
is that their block length is such that they can be
chosen to agree with the byte or word length of the
target microprocessor, allowing further
simplification during implementation. A number of
non-systematic generator matrices have been
searched and published whose distance properties
sometimes exceed equivalent convolutional codes of
the same block size and memory complexity [1,2].
In recent years turbo codes have proved themselves
when used in conjunction with iterative decoding
schemes. However, to maintain a reasonably high
throughput, turbo codes use systematic constituent
codes and transmit the information bits only once
together with a number of sets of parity bits. We
have previously attempted to construct systematic
PUM codes [3], but did not allow feedback in the
encoder structure thereby limiting the free distance
of the resulting code and hence their error correction
ability when used together with maximum-
likelihood decoding. In this paper, we describe the
construction of minimal recursive systematic PUM
generator encoder structures from equivalent non-
systematic generator matrices, which generate
codewords whose free distances reach or are very
close to the upper bound defined in [1].
The paper is organised as follows. In section 2, we
briefly describe PUM codes and their properties. In
section 3, we show, by means of an example, how to
construct equivalent systematic PUM generator

matrices from known non-systematic generator
matrices. The resulting encoder structure can
sometimes be minimised to an equivalent structure
with fewer delay elements. This minimalization
procedure is described in section 4 by continuing the
example from the previous section. In section 5,
results from the simulation of a turbo code with two
constituent recursive systematic PUM (RSPUM)
codes in a Gaussian channel are illustrated. This
turbo code is compared with an equivalent RSC
turbo code. By equivalent, we mean that these
component codes have the same free distance,
constraint length and code rate.
Simulation results indicate that the RSPUM turbo
code outperforms the equivalent RSC turbo code. In
general, the performance of RSPUM turbo codes is
comparable or in many cases better than that of the
equivalent classical RSC turbo code.

2. PUM Codes

A codeword, xt, of the (n, k, µ, dfree) PUM code is a
function of the current input word of k information
bits, ut and a fraction µ of the previous input word,
ut-1. This can be expressed by the following
equation: xt = utG0 + ut-1G1.
G0 and G1 are generator matrices of size k×n, where
n is the codeword length. The rank of the G1 matrix
is µ, where µ < k. µ determines the state complexity
of the state diagram and trellis of the code. The
addition and multiplication operations are modulo-2
for binary codes. The free distance, dfree is the
minimum weight of a codeword that diverges from
the all-zero path in the encoder standard trellis and
returns to the all-zero path for the first time.
G0 and G1 can be represented by one generator
matrix of the form G(D) where the contents of the
matrix are a function of the time delay. The latter
representation will be used throughout the rest of
this paper.
A PUM code trellis can be represented by a standard
trellis with 2µ starting and ending states and 2k
branches leaving and entering each node,
respectively. Since a PUM code is characterised by
k>µ, there are 2k-µ parallel branches between any

Tadeusz A Wysocki
191

two states in the trellis. Each branch is labelled with
n symbols. For codes encoded by non-systematic
generator matrices, the trellis labels will all be parity
bits. In the case of systematic code structures, the
trellis labels will each be made of k information bits
and n-k parity bits.
The generic max-log MAP decoding of systematic
codes with multi-labelled trellis branches can be
summarised by the following equations.
The forward and backward recursion node metrics,
α and β, at time t are a function of the branch
transition probability Γ for all possible k inputs
allowing transition from s’ to s. The log-likelihood Γ
is the sum of the a priori likelihoods, L(u) for the k
information bits and the likelihoods of the n
channel-compensated received values Lcy.












+=Γ ∑∑

n
ntcnt

k
ktktt yLxuLuss ,,,,)(

2
1),'(log

())'(log),'(log)(log 1
'

max ssss tt
s

t −+Γ= αα

())(log),'(log)'(log max1 ssss tt
s

t ββ +Γ=−

The a posteriori LLR for each of the k symbols at
time t is the sum of the a priori LLR, the LLR of the
channel-compensated received value and the
extrinsic LLR of the symbol in question.

),'(log)()(,,,,
^

ssyLuLuL jtjtcjtjt γ++=



















+= ∑∑
≠≠ jn

n
ntcnt

jk
k

ktktjt yLxuLuss
,

,,
,

,,,)(
2
1),'(logγ

3. Construction of RSPUM code

structures

If an encoding matrix has some k×k sub matrix
whose determinant is a delay free polynomial,
premultiplication by such a matrix yields an
equivalent systematic encoding matrix [3].
Every convolutional matrix is equivalent to a
systematic rational encoding matrix. If the
determinant of the leftmost k×k sub matrix of G(D)
is not a delay free polynomial, then we can always,
by permuting the columns of G(D), find a generator
matrix G'(D) whose leftmost k×k sub matrix has a
determinant which is a delay free polynomial, where
G'(D) encodes an equivalent code. Hence, without
loss of generality we can write a systematic
encoding matrix G(D)=(IkR(D)).
As an example, consider the (4,2,1,4) PUM code
with generator matrix G(D).









+

=
DD

DG
101

1111
)(

Let the T(D) be the leftmost 2×2 sub matrix of G(D),
whose determinant is 1+D.









+

=
01
11

)(
D

DT

The equivalent systematic generator matrix Gsys(D)
is given by:

Gsys(D) = T(D)-1.G(D)

















++

++=







++

=

DD
D

D
D

DDG
DD

DGsys

1
1

1
10

11
101

)(.
11
10

1
1)(

The controller canonical form of Gsys(D) contains 2
storage registers as shown in Figure 1.

u(1)

u(2)
c(1)

c(2)

c(3)

c(4)

Fig 1: Controller canonical form of Gsys(D).

However, a minimal encoder with only 1 register
can be realized. This minimalization process [4] is
described below.

4. Low complexity RSPUM

encoder structure

Let s(1)

t and s(2)
t be the states of the first and second

delay elements at time t, u(1)
t and u(2)

t be the two
inputs to the encoder at time t, c(3)

t and c(4)
t be the

two parity bits calculated by the encoder at time t.
The two systematic outputs can be ignored for this
process, as they remain unchanged.
The next states of the delay elements at time t+1 and
the outputs of encoder at time t can be written as a
function of the states and the inputs at time t.

s(1)
t+1 = s(1)

t + u(1)
t

c(3)
t = s(1)

t+1 + s(2)
t = s(1)

t + s(2)
t + u(1)

t
s(2)

t+1 = s(2)
t + u(2)

t
c(4)

t = s(1)
t + s(2)

t+1 = s(1)
t + s(2)

t + u(2)
t

These equations are used to build Table 1.

Tadeusz A Wysocki
192

Inputs u(1)
t u(2)

t Present State
s(1)

t s(2)
t 00 01 10 11

00 00/00 01/01 10/10 11/11
01 01/11 00/10 11/01 10/00
10 10/11 11/10 00/01 01/00
11 11/00 10/01 01/10 00/11

Table 1: Successor states and outputs (s(1)

t+1
s(2)

t+1/c(3)
t c(4)

t) as a function of the present state
(s(1)

t s(2)
t) and the inputs (u(1)

t u(2)
t).

In order to find which states are equivalent, those
states that correspond to the same outputs are
merged into partition P1: {00,11}, {01,10}.
The states in each set are 1-equivalent. The next
stage is to determine whether this set can be further
broken down into a partition P2 whose states are 2-
equivalent. Two states are 2-equivalent if they are 1-
equivalent and their successor states are 1-
equivalent. In this case, P2=P1. In general,
partitioning is carried out till Pi+1=Pi.

In order to obtain a linear realization of the minimal
encoder, we let 0 represent the state {00,11} and 1
represent {01,10}. This is shown in Table 2.

Inputs u(1)
t u(2)

t Present State
st 00 01 10 11
0 0/00 1/01 1/10 0/11
1 1/11 0/10 0/01 1/00

Table 2: Successor state and output (st+1/c(3)

t c(4)
t) as

a function of the present state (st) and the inputs
(u(1)

t u(2)
t)

From Table 2, the successor state can be represented
as a function of the present state and inputs as shown
in Table 3.

Inputs Present State
00 01 10 11

0 0 1 1 0
1 1 0 0 1

Table 3: Successor state as a function of the present

state (st) and the input (u(1)
t u(2)

t).

Hence, st+1 = st + u(1)

t + u(2)
t. The same procedure is

used to determine the parity bits as a function of the
present state and k inputs. This yields for the first
parity bit: c(3)

t = st + u(1)
t, and the second parity bit:

c(4)
t = st + u(2)

t . Figure 2 illustrates the minimised
encoder structure representing the new equations
determined.

u(1)

u(2)

c(1)

c(2)

c(3)

c(4)

Fig 2: Minimized realization of the systematic

(4,2,1,4) PUM Code.

The decoding trellis, including branch labels, of the
above realization is shown in Figure 3. The labels are
written in the order c(1)

t c(2)
t c(3)

t c(4)
t. The edge

complexity is only 4 branches per information bit
(bpi).

0000

0101
1111

1100

1010

0011
0110 1001

0

1

Fig 3: Low complexity 2-state trellis

5. Simulation and performance

A parallel-concatenated code with two component
(4,2,1,4) RSPUM codes is constructed to yield a rate
1/3 turbo code. Figure 4 shows its performance in an
AWGN channel for an interleaver size of 10000.
The encoder structure of the equivalent recursive
systematic convolutional code with constraint length
2 is shown in Figure 5. Its trellis has 2 states and a
branch complexity of 4 bpi. The code has a free
distance of 4 over two information symbols.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
ER

Eb/No (dB)

(4,2,1,4) RSPUM Turbo Code
Interleaver length = 10000 bits

BPSK uncoded

Iter #1

Iter #2

Iter #4

Iter #8

Fig 4: Performance of (4,2) RSPUM turbo code for

up to 8 iterations.

Tadeusz A Wysocki
193

c(1)

c(2)

u(1)

Fig 5: Equivalent RSC encoder structure.

The relative performance of the rate 1/3 turbo
decoders with two constituent RSC codes and
RSPUM codes respectively is illustrated in Figure 6.
Both turbo encoders use an interleaver size of 10000.

-1 0 1 2 3 4 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
ER

Eb/No (dB)

RSPUMTC v/z RSCTC for 4 iterations
Interleaver length = 10000

uncoded BPSK

RSCTC RSPUMTC

Fig 6: Relative performance of equivalent codes for

4 iterations.

Overall, the RSPUM turbo code outperforms the
equivalent RSC turbo code by about 0.5 dB.

6. Conclusion

In this paper, the example of the simple (4,2,1,4)
PUM code was used to demonstrate construction of
the low complexity and maximum distance recursive
systematic encoder structure. Hence recursive
systematic PUM code structures can be efficiently
constructed from known non-systematic generator
matrices in order to retain their good distance
properties. These encoder structures can be further
minimised to yield encoder structures with fewer
memory elements. The resulting code trellis has a
very low decoding complexity and can be used
effectively in turbo code systems. Simulation results
showed that the performance of the (4,2,1,4)
RSPUM as a constituent code in a rate 1/3 turbo code
system outperforms the equivalent RSC turbo code.

REFERENCES

[1] G S Lauer, “Some Optimal Partial Unit-Memory
Codes”, IEEE Trans. Inf. Theory, Vol. IT-25,
No. 2, pp. 240-243, March 1979.

[2] L N Lee, “Short, unit-memory, byte-oriented,
binary convolutional codes having maximal free
distance”, IEEE Trans. Inf. Theory, vol. IT-22,
pp. 349-352, May 1976

[3] L Fagoonee, B Honary and C Williams. "Error
Protection Using PUM Turbo Codes for Future
Mobile Communication Systems", 2nd Int.
Conf. on 3G Mobile Communication
Technologies, London, March 2001.

[4] R Johannesson and K S Zigangirov,
“Fundamentals of Convolutional Coding”, IEEE
Press, 1999.

ACKNOWLEDGEMENT

This work is funded under the Ministry of Defence
Applied Research Program. The authors would also
like to thank Prof. Shavgulidze for his suggestions
and support.

Tadeusz A Wysocki
194

	PUM-based turbo Codes
	L Fagoonee*, Prof B Honary*, C Williams**
	
	*Dept. of Communication Systems, Lancaster University, Lancaster, UK
	Inputs u(1)t u(2)t

